Code No.: R22EC57202PC/EC57202PC

R22/R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-M.TECH-II-Semester End Examinations (Regular & Supply) - September- 2023 LOW POWER VLSI DESIGN (VLSI SD)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)
1. a)	Define Dynamic power.	[1M]
b)	What is mean by scaling?	[1M]
c)	What is the effect of Glitch?	[1M]
d)	Define clock skew.	[1M]
e)	What is mean by Retiming?	[1M]
f)	What is the main limitation of Ripple carry adder?	[1M]
g)	List out the advantages and disadvantages of SRAM. Why refreshing operation is required in DRAM?	[1M]
h) i)	What is the major disadvantage of variable length instruction set?	[1M] [1M]
j)	Compare register variables with memory variables.	[1M]
3)	Compare register variables with memory variables.	[1141]
	PART-B	(50 Marks)
2.	Discuss in detail different sources of power dissipation in digital ICs.	[10M]
	OR	
3.a)	What are the four recurring themes in low power? Elaborate	[5M]
b)	Briefly discuss the mechanism of power consumption in CMOS circuits.	[5M]
4.	Design the following dynamic flip-flops:	
a)	C ² MOS	[4M]
b)	Precharged TSPC	[3M]
c)	Non-precharged TSPC	[3M]
OR		
5.	Demonstrate the types of high-performance energy recovery CMOS Approaches.	[10M]
6.	Discuss in detail the simulation based and probabilistic based power estimation	[10M]
	techniques.	
7. Design the following types of Multipliers:		
7. a)	8-bit Array Multiplier	[5M]
b)	8-bit Wallace tree multiplier	[5M]
0)	o on transce tree manipher	[3111]
8.	Discuss in detail about low power SRAM circuits.	[10M]
	OR	. ,
9.	Discuss DRAM circuits by emphasizing charging capacitance for the memory are	ay. [10M]
5000	, , , , , , , , , , , , , , , , , , , ,	, []

10. Briefly discuss several possible low-power implementation options and their suitability for microprocessor design.

OR

11. Discuss briefly the following architectural issues that may be addressed w.r.t low power Microprocessor designs:

a) Datapath design
b) Cache effects

[5M]
