Code No.: CS58101PC

R20 H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-M.TECH-I-Semester End Examinations (Regular) - April- 2022 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (CSE)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A (20 Marks)	
1. a) b) c) d)	What are the applications of the univariate distributions? Write all the cumulative distribution functions. Write a formula for mean, variance. Define hypothesis testing.	[2M] [2M] [2M]
e) f) g)	What are the fundamental notions of linear algebra? Give the names of various dimensionality reduction techniques. Define planar graph.	[2M] [2M] [2M]
h) i)	Write an example for Euler cycles. What are the applications of Bioinformatics?	[2M] [2M] [2M]
j)	Define soft computing.	[2141]
2.	PART-B Find the Cumulative Distribution Functions (CDF) of X. If I toss a coin twice. Let X be the number of observed heads.	(s) [10M]
3.	OR State and prove Multivariate Central Limit Theorem.	[10M]
4.	Find the mean, variance and standard deviation of the following scores on an exam: 92, 95, 85, 80, 75, 50.	[10M]
5.	OR Define Methods of Moments. What are the multivariate normal distributions applications?	[10M]
6.	What is linear dependence and linear independence in vectors? Check whether $V1=(2,2,1)$, $V2=(-4,6,5)$, $V3=(1,0,0)$ vectors are linear independent or not?	[10M]
7.	Illustrate the step by step process of Principal Component Analysis.	[10M]
8.	a) Write short notes on the following:	[6M]
	i) Complete Bipartite graph ii) Euler's Theorem iii) Chromatic Numberb) What do you mean by Graph isomorphism? Are the following graphs isomorphic?	[4M]

	OR	
9.	Write short notes on Mathematical applications in machine learning.	[10M]
10.	properties of matter and normal distribution.	[10M]
	OR OR	
11.	Explain Linear Regression with example.	[10M]