Code No.: CS58102PC

R22 H.7

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-M.TECH-I-Semester End Examinations (Regular) - March- 2023 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (CSE)

[Time: 3 Hours] [Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

		$\underline{PART-A} \tag{10}$	Marks)	
1.		For any propositions P and Q, $((P\Lambda (P\rightarrow Q)) \rightarrow Q)$ Is it a tautology.	[1M] [1M]	
	b)	State Demorgon's law. How many reflexive relations are there on a set with 'n' elements?	[1M]	
	c) d)	List the properties of binary relations.	[1M]	
	e)	Suppose that f is defined recursively by $f(0) = 3$, $f(n + 1) = 2f(n) + 3$. Find $f(1)$, $f(2)$, $f(3)$ and $f(4)$.	[1M]	
	f)	What is the worst-case complexity of the bubble sort.	[1M]	
	g)	Let m be a positive integer. Let $ak = C(m, k)$, for $k = 0, 1, 2,,m$. What is the generating function for the sequence a0, a1,,am?	[1M]	
	h)	Let X be the number that comes up when a fair die is rolled. What is the expected value of X?	[1M]	
	i)	Define cut vertex.	[1M]	
	j)	Define chromatic number with suitable example.	[1M]	
		DADT D (50	Marks)	
	2.	Show that the truth values of the following formula is independent of its components. $(P\rightarrow Q) \leftrightarrow (\sim PVQ)$.	[10M]	
		OR		
	3.	Show that P->S can be derived from the premises ~PVQ, ~QVR, R->S.	[10M]	
	4.	Show that the relation '⊆' defined on the power set P(A) of set A is partial order relation	[10M]	
		OR		
	5.	Let f: R->R and g: R->R, where R is the set of real numbers. Find fog and gof, where $f(x) = x^2$ -2 and $g(x) = x+4$. State whether these functions are injective, surjective and bijective.	[10M]	
	6.	Use mathematical induction to show that $1 + 2^1 + 2^2 + \cdots + 2^n = 2^{n+1} - 1$ for all nonnegative integers n.	[10M]	
	7.	Illustrate the usage of strong induction with its principle and explain it with an appropriate example.	[10M]	

8. Prove that if X and Y are independent random variables on a sample space S, then E(XY) = E(X)E(Y).

OR

- 9. Find all solutions of the recurrence relation $a_n = 5a_{n-1} 6a_{n-2} + 7^n$. [10M]
- 10. Explain the properties of adjacency matrix of a simple graph with suitable example? [10M]

 OR
- 11. Construct the minimum spanning tree for the following graph using Prim's algorithm [10M]

