Code No.: MA101BS

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-I-Semester End Examinations (Regular) - March- 2023 MATRIX ALGEBRA AND DIFFERENTIAL EQUATIONS

(Common for all)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	·	datiles to marks and		
		FARI-A	(10 Mai	
		(k-1)		[1M]
1.	a)	Find the value of k such that the rank of matrix $\begin{pmatrix} k & -1 & 0 \\ 0 & k & -1 \\ -1 & 0 & k \end{pmatrix}$ is 2.		
		C. C. WIND CONTRACTOR OF STREET		[1M]
	b)	c(2 4)		
	-/	Find the rank of $\begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$.		
		(1 2 3)		[1M]
	`	If $a = 2$, then find the Eigen values of A^{-1} .		
	c)	If $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & -5 \\ 0 & 0 & 3 \end{pmatrix}$, then find the Eigen values of A^{-1} .		
		corresponding to the quadratic	form	[1M]
15.0	d)	Find the symmetric matrix corresponds		
		$3x^2 + 3y^2 + 3z^2 + 4xy + 8yz + 8xz.$		[1M]
	e)	State Rolle's theorem.		[1M]
	f)	If $u = 3x + y$ and $v = x - 2y$ then find $\frac{\partial(u, v)}{\partial(x, y)}$.		
	-,	If $u = 3x + y$ and $v = x - 2y$ then that $\partial(x, y)$		F13.47
	- \	Find the integrating factor of $xy' + y = \log x$.		[1M]
	g)	Find the integrating factor of a coling		[1M]
	h)	State Newton's law of cooling.		[1M]
	i)	Solve $(D^2 + 4D + 5)y = 0$.		[1M]
	j)	Find Particular integral of $(D^2 + 6D + 9)y = 2e^{-3x}$.		

2. Reduce the matrix into normal form and hence find its rank $\begin{bmatrix} 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$

3. Find the values of 'a' and 'b' for which the equations [10M] $x+y+z=6, x+2y+3z=10, x+2y+\lambda z=\mu$ have (i) No solution (ii) A unique solution (iii) an Infinite number of solutions.

[10M] Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$, Hence find A^{-1} . 4.

- Reduce the quadratic form $2x^2 + 2y^2 + 2z^2 + 2yz$ to canonical form and hence find the [10M] 5. nature, rank, index and signature of the quadratic form.
- [10M] Prove that $\frac{\pi}{3} - \frac{1}{5\sqrt{3}} > \cos^{-1}\left(\frac{3}{5}\right) > \frac{\pi}{3} - \frac{1}{8}$ using Lagrange's mean value theorem. 6.
- Find the stationary points of $u(x, y) = \sin x \sin y \sin(x + y)$ where $0 < x < \pi, 0 < y < \pi$ and [10M] 7. find the maximum of u.
- [10M] Solve the differential equation $(1-x^2)\frac{dy}{dx} + xy = y^3 \sin^{-1} x$. 8.
- The number N of bacteria in a culture grew at a rate proportional to N. The value of N [10M] was initially 100 and increased to 332 in one hour. What was the value of N after $1\frac{1}{2}$ 9. hours?
- [10M] Solve $(D^2-4D+3)y = \sin 3x \cos 2x$. 10. [10M]
- Solve the differential equation $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} + 2y = x \log x$. 11.