Code No.: EC401PC

R20 H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Supply) - February- 2023 NETWORK ANALYSIS AND TRANSMISSION LINES (ECE)

[Time: 3 Hours]

Laplace Transform method.

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	20 Marks)
1. a) b) c) d) e) f) g)	Define Graph, Tree, Basic Cut set and Basic Tie set. Illustrate with an example. Explain Active elements in detail. Derive the relation between voltage and current in a series connected RL Circuits. Draw a power triangle in series connected RLC networks. Derive the relation between RMS and maximum value. Define form factor and peak factor Differentiate group and phase velocities	[2M] [2M] [2M] [2M] [2M] [2M]
h)	What is condition for distortion less transmission line?	[2M]
i) j)	List the properties of smith chart Explain how Quarter wave transformer is used for matching?	[2M] [2M]
	PART-B	(50 Marks)
2.a) b)	What is a basic cutset matrix? Explain with an example. An Iron ring of a mean length of 50 cm has an air gap of 1 mm and a winding of 200 turns. If the relative permeability of the Iron is 400, when a current of 1 Amp flows the winding, determine the flux density? (Neglect leakage and fringing.)	[5 M] [5 M]
	OR	
3.a) b)	Discuss the dot convention used in magnetically coupled coils. Derive an expression for the coefficient of coupling between two mutually couple coils.	[5 M] ed [5 M]
4.a) b)	Derive and draw the response of a series RLC circuit for a step input. An impedance $Z_1 = 10 + j10~\Omega$ is connected in parallel with another impedance resistance 8.5 Ω and a variable capacitance connected in series. Find C such that the circuit is in resonance at 5 kHz.	
	OR	
5.a)	Design a series RLC circuit that will have an impedance of $10~\Omega$ at the resonat frequency of $\omega_0 = 100$ rad/s and a quality factor of 80. Find the bandwidth.	
b)	Obtain the response of the R-L-C series circuit for exponential excitation. Use t	he [5 M]

6.a) b)	Explain different parameters to be considered for the design of attenuators. Draw the symmetrical T and π sections and their decomposition into L sections. OR	[5 M] [5 M]
7.a)	Define Hybrid parameters of a Two Port network. Establish the relation between Hybrid parameters and ABCD Parameters.	[5 M]
b)	Draw the circuit diagram for the T and π sections of the composite filter.	[5 M]
8.a)	Distinguish between the different types of distortions present in conventional transmission lines, and establish the condition for distortion less transmission lines.	[5 M]
b)	A 75 Ω transmission line has a propagation constant of 0.05+j5 N/m, at 50 MHz. Find its primary constants, assuming phase velocity as 60% of light velocity and no distortion.	[5 M]
	OR	
9.a)	Explain the significance of infinite line, and hence obtain general expression for the line characteristic impedance using the lossy line equivalent circuit.	[5 M]
b)	Establish the expressions for the propagation characteristics α , β , γ , λ , ν_p , Z_0 for lossy distortion less transmission lines.	[5 M]
10.a)	Sketch the variations of input impedances of SC and OC lines with 5l, and explain how a UHF line can be used as an inductance or a capacitance.	[5 M]
b)	A 500 Ω RF line is connected to a load 75+j40 Ω . Estimate the resultant reflection coefficient, VSWR, Z _{min} , Z _{max} . Also find its Input Impedance, if the line length is 0.5 λ	[5 M]
	OR	
11.a)	Explain the principle of impedance matching using a single stub.	[5 M]
b)	Define the terms: Reflection coefficient and VSWR. Derive expressions for the same, as applicable to RF lines.	[5 M]
	我我我我我我我我我我	