Code No.: ME305PC

R20 H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) - February - 2023 THERMODYNAMICS (MECH)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)	
1. a)	Define irreversible process. Give examples.	[2M]	
b)	State zeroth law of thermodynamics.	[2M]	
c)	Write the differential form of the steady flow energy equation.	[2M]	
d)	State Kelvin-Planck statement.	[2M]	
e)	Define p-v-T surface and state its significance.	[2M]	
f)	Write down the equation of state of an ideal gas.	[2M]	
g)	Define Specific humidity and relative humidity.	[2M]	
h)	State Avagadro's law.	[2M]	
i)	Differentiate between Sterling and Ericsson Cycles.	[2M]	
j)	State elements of vapour compression refrigeration system.	[2M]	
PART-B (50 Marks)			
2.	A fluid at a pressure of 3 bar and with specific volume of 0.18 m ³ /kg, contained	in a [10M]	
	cylinder behind a piston expands reversibly to a pressure of 0.6 bar according		
	law, $p = (C/v^2)$ where C is a constant. Calculate the work done by the fluid or piston.	the	
OR			
3.a)	Compare Macroscopic and Microscopic approaches in thermodynamic studies.	[5M]	
b)	Explain about point function and path function with examples.	[5M]	
4.a)	A cyclic heat engine operates between a source temperature of 800°C and a		
	temperature of 30°C and heat supply to heat engine is 50kW. What is the least ra	te of	
1.5	the heat rejection per kW net output of the engine?	[4]4]	
b)	Apply first law to a process and a cycle.	[4M]	
<i>5</i> -)	OR	[5M]	
5.a)	Explain in detail about Clausius inequality. 3 kg of air is expanded at constant pressure to three times its initial volume. Calculate the constant pressure to three times its initial volume.		
b)	the change in entropy if the initial temperature of the air is 300°C.	indic [5141]	
	the change in charge in the initial temperature of the air is 500 C.		
6.	Steam at a pressure of 5 bar passes into a tank containing water where it	gets [10M]	
	condensed. The mass and temperature in the tank before the admission of steam		
	50 kg and 20°C respectively. Calculate the dryness fraction of steam as it enters		
	tank if 3 kg of steam gets condensed and resulting temperature of the mix		
	becomes 40°C. Take water equivalent of tank as 1.5 kg.		
	OR		
7.a)	Explain Throttling process and Free expansion process.	[5M]	

b)	$0.3~\text{m}^3$ of air at pressure 8 bar expands to $1.5~\text{m}^3$. The final pressure is $1.3~\text{bar}$. Assuming the expansion to be polytropic. Calculate the heat supplied and change of internal energy. Assume $\gamma = 1.4$	[5M]
8.a)	A gas mixture consists of 0.4 kg CO, 1.1 kg of CO ₂ and 1.5 kg of N ₂ . Determine i. Mass fraction of each component. ii. Mole fraction of each component.	[6M]
b)	iii. Gas constant of the mixture. Write a short note on the Gravimetric Analysis.	[4M]
9.a) b)	OR State Daltons law of partial pressure. Define DBT, WBT, Dew point temperature and degree of saturation.	[2M] [8M]
10.	Derive an expression for efficiency of Otto cycle. Draw p-V and T-s diagrams.	[10M]
11.	Explain the working of Bell-Coleman cycle and derive the expression for COP. ***********************************	[10M]