R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Regular) - September- 2023 VECTOR CALCULUS AND TRANSFORMS

(Common for all)

[Time: 3 Hours]

[Max. Marks: 60]

[10M]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

b) Find div \bar{f} where $\bar{f} = \text{grad}(x^3 + y^3 + z^3 - 3xyz)$.

scalar potential function corresponding to it.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(10 Marks)
1.a) b) c)	Find L[te ^{2t}]. State First Shifting theorem. Find L ⁻¹ [$\frac{1}{(S-4)} + \frac{5}{(S-2)^2}$].	[1M] [1M] [1M]
d) e)	Write the formula for Laplace transform of integrals. Evaluate $\int_0^2 \int_0^x y dx dy$.	[1M] [1M]
f) g) h) i)	Find $\beta(7,9)$. Using $\beta-\gamma$ relation. If $f=(x+3y)i+(y-2z)j+(x+pz)k$ is solenoidal, find p. If $f=xy^2i+2x^2yzj-3yz^2k$ find curl f at $(1,-1,1)$. State Green's Theorem. Find the work done by the force $F=3x^2i+(2xz-y)j+zk$ along the straight line joining the points $(0,0,0)$ to $(2,1,3)$.	[1M] [1M] [1M] [1M] ne [1M]
2.	Find the Laplace transform of $\{\frac{sint}{t}\}$, $\{\frac{e^{-at}-e^{-bt}}{t}\}$, $\{tsin2t\}$.	(50 Marks) [10M]
3.	Find the Laplace Transform of the square wave function of period 2a defined as $f(t)$ k when $0 < t < a$ and $f(t) = -k$ when $a < t < 2a$.	= [10M]
4.	Find the Inverse Laplace transform of $log \frac{(s+3)}{(s+4)}$.	[10M]
5.	Using Laplace transform, solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t}sint$, given that $y(0) = y^1(0) = 1$.	o, [10M]
6.a)	Evaluate $\int_0^\infty x^2 e^{-x^2} dx$ using beta-gamma function.	[5M+5M]
b)	Show that $\gamma(n) = \int_0^1 (\log \frac{1}{x})^{n-1}, n > 0.$	
	OR	[10M]
7.	Evaluate $\int \int (x^2 + y^2) dx dy$ over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	[10141]
8.a)	Find the directional derivative of $f(x,y,z)=zx^2-xyz$ at the point (1,3,1) in the direction of the vector $3i-2j+k$.	on [5M+5M]

OR

Find whether the function $\overline{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ is irrotational, hence find

- 10.a) If $\overline{F} = 3xyi-y^2j$ Evaluate $\int_c \overline{F} .d\overline{r}$ where C is the curve $y=2x^2$ in the xy plane from [5M+5M] (0,0) to (1,2).
 - b) If \overline{F} =4xyi-y²j+yzk Evaluate $\iint \overline{F}$. n ds where S is the surface of the cube bounded by x=0,X=1,y=0,y=1,z=0,z=1.

7

OF

11. Verify Green's theorem for $\iint_{c} [(3x^2 - 8y^2)dx + (4y - 6xy)dy]$ where c is the region [10M] bounded by $y = x^2$ and $y = \sqrt{x}$.
