Code No.: (R22EC402PC)

R22

H.T.No.

8 R	
-----	--

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Regular) -July- 2024 ANALOG AND DIGITAL COMMUNICATIONS (ECE)

[Time: 3 Hours] [Max. Marks: 60]
Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	$\underline{\mathbf{PART-A}} \tag{10}$		(s)
1. a)	Describe the components and operation of a Costas loop.	[1]	M]
b)	How can SSB signals be demodulated?	[1]	M]
c)	Define phase modulation (PM).	[1]	M]
d)	Explain why FM provides better noise immunity compared to AM.	[1]	M]
e)	Explain the primary functions of an FM transmitter.	[1]	M]
f)	Define intermediate frequency (IF) in the context of RF receivers.	[1]	M]
g)	Compare PPM with PWM in terms of bandwidth efficiency and noise immunity.	[1]	M]
h)	How does adaptive delta modulation encode and decode analog signals?	[1]	M]
i)	How is digital information represented using Amplitude Shift Keying (ASK)?	[1]	M]
j)	Discuss the error performance of QAM in terms of BER and SNR.	[1]	M]
$\underline{PART-B} \tag{50 Marks}$			
2.	Explain the concept of single tone AM. How do the upper and lower sidebands reto the carrier frequency and modulation frequency? OR	elate [1	0M]
3.	Derive the expressions for total power, carrier power, and sideband power in an signal.	AM [1	0M]
4.a)	Given a carrier frequency of 1 MHz and a message signal with a frequency of 1 sketch the spectrum of the PM signal for phase deviations of 0.5 and 1 radian.	kHz, [5M]
b)	Define frequency modulation (FM). How does it differ from amplitude modula (AM) and phase modulation (PM)?	ation [5M
	OR		
5.a)	Given a carrier frequency of 100 MHz and a message signal with a frequency of kHz, sketch the spectrum of the FM signal for a frequency deviation of 75 kHz.	10 [5	5M]
b)	Compare AM and FM in terms of bandwidth requirements, noise immunity, a power efficiency.	and [5	5M]
6.a) b)	Draw the block diagram of superheterodyne AM receiver and explain the funct of each block.	_	5M] 5M]
	Discuss the benefits and drawbacks of AGC. OR		
7.a)	Explain the role of power amplifiers in AM transmitters. Why are they crucial	l for [7M]
, .u)	long-distance transmission?	101	, 111]
b)	Compare direct frequency synthesis and indirect frequency synthesis methods	[3	3M]

8. Describe the generation of PPM signal and how information is encoded in the timing [10M] or position of pulses. OR 9.a) Derive the formula for calculating the sampling rate required to prevent aliasing in [5M] PCM. Describe the process of analog to digital conversion using pulse code modulation. b) [5M] 10. Discuss the error performance of BPSK in terms of bit error rate (BER) and signal-[10M] to-noise ratio (SNR). And Compare the error characteristics of BPSK with those of ASK and FSK. OR Describe the modulation scheme used in QPSK with a neat block diagram. How are [10M]