Code No.: AP102BS

R20

H.T.No.

8 R

[Max. Marks: 70]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I–B.TECH–I–Semester End Examinations (Supply) -February- 2024 APPLIED PHYSICS

(Common for CSE, IT, CSC, CSD)

[Time: 3 Hours]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	<u>PART-A</u> (20 M	Aarks)
1. a)	Mention the characteristics of matter waves.	[2M]
b)	Write down the physical significance of the wave function.	[2M]
c)	What is Hall effect? Give its importance.	[2M]
d)	What is a solar cell? Mention its applications.	[2M]
e)	What are dipole moment and dielectric constant in dielectrics?	[2M]
f)	Distinguish between anti-ferro and ferri magnetic materials.	[2M]
g)	What are the characteristics of a laser?	[2M]
h)	Mention the losses in an optical fiber.	[2M]
i)	What is surface to volume ratio at the nano scale?	[2M]
j)	Outline the various applications of nanomaterials.	[211]
PART-B (50 Marks)		
_		[10M]
2.	Derive an expression for Schrodinger's time-independent wave equation. OR	[1011]
2	Describe the classification of solids based on band theory.	[10M]
3.	Describe the classification of solids based on band theory.	. ,
4.	Derive an expression for the carrier concentration in a p-type extrinsic semiconductor.	[10M]
	OR	[] (M)
5.	Discuss the working of the p-n junction diode at various biased conditions.	[10M]
6.	Deduce the expression for the Classius-Mossotti equation in the case of solid dielectrics.	[10M]
	OR	
7.	Explain the concept of piezo-electricity and ferro-electricity.	[10M]
8.	Describe the construction and working of the Ruby laser with a neat diagram.	[10M]
	OR	
9.	Derive an expression for the acceptance angle and numerical aperture of an optical fiber.	[10M]
10.		[10M]
	Sol-Gel method.	
	OR	[10M]
11.	Explain how X-ray diffraction can be used to characterize nanoparticles.	[10141]