Code No.: EC405PC

R20 H.T.No. 8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Supply) - July 2024 CONTROL SYSTEMS

(ECE)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)
1. a)	Define transfer function.	[2M]
b)	What is a signal flow graph?	[2M]
c)	Define rise time and delay time.	[2M]
d)	State the initial value and final value theorems.	[2M]
e)	What are the effects of adding a Zero to the system?	[2M]
f)	What is centroid? How the centroid is calculated.	[2M]
g)	Define gain margin & phase cross over frequency.	[2M]
h)	What are the uses of lead compensator?	[2M]
i)	Define Controllability and Observability.	[2M]
j)	What are the advantages of state space representation?	[2M]

PART-B

(50 Marks)

2. Write the differential equations of the given mechanical system and obtain transfer function $\Theta(S)/T(S)$.

OR

3. Determine the transfer function for the given block diagram using block diagram reduction [10M] technique and also draw the signal flow graph.

4. A certain unity negative feedback control system has the following open loop transfer [10M] function G(s) = 10/s(s+2). Determine percentage overshoot, peak time and rise time?

- 5. Using Routh criterion Determine the stability of the system represented by the characteristic equation S⁴+8S³+18S²+16S+5=0. Comment on the roots of the characteristic equation.
- Sketch the bode plot for the given transfer function $G(S) = \frac{2S^2}{[(1+0.2S)(1+0.02S)]}$. Determine the [10M] value of gain and phase margin for the gain cross over frequency of 5 rad/sec.

Explain the design procedure of the Nyquist plot.

[10M]

Explain and derive the frequency domain specifications.

[10M]

Explain the design procedure of lag compensator.

[10M]

Determine whether the following system is completely state controllable and observable or $\dot{X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U$ $Y = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} X$

[10M]

Determine state model for a system characterized by the differential equation

[10M]

$$\left(\frac{d^3y}{dt^3}\right) + 6\left(\frac{d^2y}{dt^2}\right) + 11\left(\frac{dy}{dt}\right) + 6y + u = 0$$