Code No.: DS305ES

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) - February- 2024 DIGITAL LOGIC DESIGN

(CSD)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	<u>PART-A</u> (20 I	Marks)
1. a) b) c) d) e) f) g) h) i)	Convert (145.96) ₁₀ to hexadecimal numbers. Define a minterm and a maxterm. Identify any two fundamental postulates of Boolean Algebra. Realize the NAND gate using NOT gate. What is Comparator and deduce the truth table of 1-bit comparator. Outline any two applications of encoder and decoder. What is latch and filp-flop. Differentiate synchronous and asynchronous counters. Give the comparison between ROM and PLA. Explain RAM briefly.	[2M] [2M] [2M] [2M] [2M] [2M] [2M] [2M]
2.	PART-B (50 Represent decimal number 8620 in i) BCD, ii) Excess-3 code, iii) Binary number and iv). Grey code.	Marks) [10M]
3. a) b)	OR Perform the subtraction with the following unsigned binary numbers by taking the 1's complement of the subtrahend. 11110 – 10000 11010 – 1100	[5M] [5M]
4.	Minimize the following expression using K-map and realize using NAND gates. $F(A, B, C, D, E) = \prod (6,9,11,13,14,17,20,25,28,29,30)$	[10M]
5.	Simplify the following function and implement with NAND gates $F=\Sigma m(0,1,3,4,5,7,9,11,13,15)$.	[10M]
6.	Construct a 4-bit binary adder using full-adders to perform binary addition between two 4-bit numbers.	[10M]
7.	OR Design 3:8 decoder and explain operation with truth table.	[10M]
8.	Implement a 3-bit Ring Counter circuit using D-Flip Flops.	[10M]
9.	OR Illustrate the operation of clocked SR Flip-Flop with the help of truth table.	[10M]
10.	Implement the following functions using PROM: $F1=\Sigma m(0,1,3,5,7)$; $F2=\Sigma m(0,4,3,6,7)$.	[10M]
11.	OR Classify different PROMS and explain in detail. ***********************************	[10M]