Code No.: R22EC305ES

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Regular) - February- 2024 DIGITAL LOGIC DESIGN

(CSD)

	ne: 3 Hours]	[Max. Marks: 60]
Note: This question paper contains two parts A and B.		
Part A is compulsory which carries 10 marks. Answer all questions in Part A.		
Part B consists of 5 Units. Answer any one full question from each unit. Each question		
carries 10 marks and may have a, b, c as sub questions.		
	PART-A	(10 Marks)
1. a)		[1M]
b)		[1M]
c) d)		[1M]
e)	Obtain the PI, EPI for given function $f(x, y,z) = \sum m(0, 2, 3, 5)$. Compare between combination circuit and sequential circuits.	[1M]
f)	How many 4X1 MUX required to implementation of 32 X1 MUX?	[1M]
g)	Explain the D flip flop Truth table.	[1M]
h)	How many used and unused states for decade counter?	[1M] [1M]
i)	Define Programmable Array Logic (PAL) and its role in digital circuits?	[1M]
j)	Explain the memory decoding.	[1M]
D. Der v		
2.	PART-B Convert the following numbers in the way specified:	(50 Marks)
2.	i. (11001010.0101) ₂ to base 10	[10M]
	ii. (53.1575) ₁₀ to base 2	
	iii. (11001101.0101) ₂ to base 16	
	iv. $(315)_8$ to base 10	
	v. (1001010101) ₂ to Gray code	
2	OR	
3.	i. Determine the canonical sum-of-products representation of the	ne functions [10M]
	f(x, y, z) = x + (x'y' + x'z) ii. To simplify the expression T (x, y, z) = (x + y)[x'(y' + z')] + x'y' + x'z'	
	ii. To simplify the expression T $(x, y, z) = (x + y)[x'(y' + z')] + x'y' + x'z'$	Ľ'
4.	Minimize the switching functions $f(w, x, y, z) = \sum m(1, 3, 4, 5, 9, 10, 11) + \sum m(1, 3, 4, 5, 9, 10, 11)$	$_{d}(6,8)$ [10M]
5.	OR	
٥.	Determine the minimal sum-of-products expression for f (w, x, y, z) = $\sum m(0, 14) + \sum_{d}(3, 5)$ and draw a NOR GATE circuit diagram.	2, 8, 10, 12, [10M]
,		
6.	Implementation of full subtractor using 3 to 8 Decoder.	[10M]
7.	OR Design the 2- bit magnitude comparator.	F101 (7)
8.		[10M]
0.	What are the disadvantages of JK Flip Flop? Draw a JK flip flop logic characteristic equation.	diagram and [10M]
	OR	
9.	Design a 4 bit ring counter.	[10M]
10.	Discuss how PALs are used in combinational and sequential logic and List the	e advantages [10M]
	of using a PLA in comparison to fixed logic circuits.	[]
1.1	OR	
11.	Explain the Random-Access Memory and discuss with details.	[10M]
