Code No.: EC503PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-I-Semester End Examinations (Supply) - June- 2024 DIGITAL SIGNAL PROCESSING

(ECE)

[Time: 3 Hours]
Note: This question paper contains two parts A and B.

[Max. Marks: 70]

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks

	carries 10 marks.	
	<u>PART-A</u>	(20 Marks)
1. a) b)	Determine fundamental Time period of the signal $x(n) = \sin(0.02 \pi n)$. Test the causality of the system whose impulse response is given by $h(n)=(1/2)^n u(n)$	[2M]) [2M]
c) d) e) f) g) h) i)	Distinguish between DFT and radix- 2 FFT algorithms. Write the expression for twiddle factor. Compare between Butterworth with Chebychev filters. What is warping effect? What is the use of anti-aliasing filter? Write the expression for Bilinear Transformation? How aliasing can be reduced in down sampling? How to prevent overflow in design of digital filters?	[2M] [2M] [2M] [2M] [2M] [2M] [2M]
3,7	Tion to provent overnous in design of angular mostles	
2.	PART-B Determine the transfer function of the system given by the difference equation	(50 Marks) [10M]
	$y(n) = -\frac{1}{2}y(n-1) + x(n) - \frac{1}{2}x(n-1)$ for $n \ge 0$	
3.	Check for following systems is linear, causal, time in variant.	[10M]
	i) $y(n) = x(2n) + x(n-3)$	
	ii) $y(n) = cos(x(2n))$	
4.	Compute the DFT of the following sequence using Radix -2, DIT-FFT algorithm $x[n] = [1, 1, 1, 1, 0, 0, 0, 0]$	[M01]
5.	OR Compute IDFT of the sequence $X(K) = [7, -0.707-j0.707, -j, 0.707-j0.707]$ using I FFT algorithm	OIT [10M]
6.	A digital low pass filter is required to meet the following specification Passband ripple:≤ 0.5 dB Passband edge:1.2kHz Stopband attenuation:≥10 dB Stopband edge:3KHz Sample rate:2kHz The filter is to be Chebychev design by performing a bilinear transformation or analog system function.	[10M] n an
7.	OR Convert the analog filter with system function $H(S) = \frac{s+0.1}{(s+0.1)^{2+9}}$ into a digital I	IR [10M]
•	Convert the analog filter with system tunderen (5+0.1)*+9	

filter by means of the impulse invariance method.

8. Compare IIR and FIR filters. [10M]

OR
9. Realize the given system in direct form-I y[n] = 0.7y[n-2] - 0.25y[n-5] + x[n] + 0.4 [10M] x[n-3]

10. Explain the Decimation by a Factor D. [10M]

OR

11. What are limit cycles? and also Explain in detail about finite word length effects in [10M] digital filters.

. ********