Code No.: CS305PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) - February- 2024 DISCRETE MATHEMATICS (Common to CSE, IT & CSM)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)
1. a)	Differentiate Tautology and Contradiction.	[2M]
b)	Prove the Demorgan's law.	[2M]
c)	Define Cartesian product. Give an example.	[2M]
d)	Define Equivalence relation.	[2M]
e)	How many words of three distinct letters can be formed from CAKE?	[2M]
f)	Define Recursion.	[2M]
g)	State Bayes theorem.	[2M]
h)	Find the Generating function of the following series b,b,b,b,b,b,b.	[2M]
i)	Define Bipartite graph.	[2M]
j)	Distinguish between planar and non-planar graphs.	[2M]
	PART-B	(50 Marks)
2. a)	Show that S V R is tautologically implied by $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow S)$	[5M]
b)	Describe the basic connectives along with their truth tables.	[5M]
	OR	
3.	Obtain PCNF and PDNF by using truth table for the formula $(P \rightarrow Q) \ V \ (Q \leftrightarrow R)$.	[10M]
4. a)	Let $f(x)=x+2$, $g(x)=x-2$, $h(x)=3x$ find i) fog ii) goh.	[5M]
b)	Construct Hasse diagram for factors of 210.	[5M]
	OR	
5.	What is Equivalence relation? Prove that $R=\{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4), (5,5), (5,6), (6,5), (6,6)\}$ is Equivalence relation.), [10M]
6.	Explain the concept of principles of mathematical induction using an example? OR	[10M]
7.	Write a short notes on	[10M]
	i. Complexity of algorithms	
	ii. Growth of function	
8.	Explain briefly Inclusion – Exclusion and its Applications. OR	[10M]
9.	Solve the recurrence relation $a_n = a_{n-1} - n$ with the initial term $a_0 = 4$.	[10M]

Explain Kruskal's algorithm for following graph 10.

OR
What do you mean by chromatic number? Find the chromatic number of the following graph: 11. [10M]

[10M]