Code No.: (R22IT402PC)

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Regular) -July- 2024 DISCRETE MATHEMATICS

(Common for IT, CSD, CSC)

[Time: 3 Hours] [Max. Marks: 60]

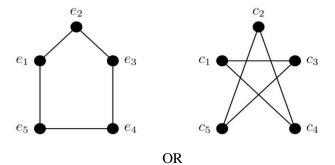
Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

carries 10 marks and may have a, b, c as sub questions.		
	PART-A	(10 Marks)
1. a)	Define Tautology with suitable example.	[1 M]
b)	Write the statement in symbolic form then negate statements: i. Some Drivers do not obey the speed limit. ii. All dogs have fleas.	[1M]
c)	Draw the Venn diagrams for $(A \cap B) \cup (C \cap D)$ of the sets A, B, C, and D.	[1 M]
d)	If $A = \{\alpha, \beta\}$, $B = \{1,2,3\}$. Find out $(A \times B) \cup (B \times A)$.	[1 M]
e)	Give an example of a monoid that is not a group.	[1 M]
f)	Define partially ordered set (poset).	[1 M]
g)	Define conditional probability.	[1 M]
h)	State the principle of Inclusion-Exclusion.	[1 M]
i)	Define complete graph and wheel graph.	[1M]
j)	List the properties of binary trees.	[1M]
	PART-B	(50 Marks)
2.	Construct a truth table for each of these compound propositions. i. $p \to \neg p$ ii. $p \leftrightarrow \neg p$ iii. $p \land q \to p \lor q$ iv. $(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$	[10M]
3.a)	OR Prove that $(\forall x)(P(x) \lor Q(x)) \Longrightarrow (x)P(x) \lor (\exists x)Q(x)$	[5M]
b)	Show that $r \land (p \lor q)$ is a valid conclusion from the premises $(p \lor q)$, $(q \to r \to m)$ and $(\sim m)$.	
4.	Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = x$, y , $-y$ is divisible by 3 in X . Show that an equivalence relation	R is [10M]
~	OR	[10] (1
5.	Consider the sets $A = \{1,2,3,4\}$, $B = \{3,4,5,6,7\}$, $C = \{6,7,8,9\}$ Find AUBUC, $(A \cap B) - (B \cap C)$, $A - (BUC)$, $A \times B$, $B \times A$, $A \times B \times C$.	[10M]
6.	Define the terms: POSET and Hasse diagram. Determine if the set S={2,4,8,16} the divisibility relation is a partially ordered set and draw Hasse Diagram.	with [10M]
OR		
7.a) b)	Define Lattice and explain its properties. If a, b are any two elements of a group (G, .) which commute, show that a ⁻¹ a commute, b ⁻¹ and a commute, a ⁻¹ and b ⁻¹ commute	[5M] nd b [5M]

8. State and prove multinomial theorem.


OR

[10M]

9.a) Suppose the postal department prints only 5 and 9 cent stamps. Prove that it is possible to make up any postage of n cents using only 5 and 9 cent stamps for $n \ge 35$.

b) What is the probability that a positive integer selected at random from the set of positive integers not exceeding 100 is divisible by either 2 or 5?

10. Verify whether the graphs G and G1 are isomorphic or not. Explain the reason. [10M]

11. Show that a graph K_n has a Hamiltonian cycle whenever $n \ge 3$. [10M]