Code No.: ME603PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Regular) - June- 2024 FINITE ELEMENT METHODS (MECH)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	<u>PART-A</u>	(20 Marks)
1. a)	Define shape function.	[2M]
b)	Write the steps in the concept of FEM formulation.	[2M]
c)	Outline the differences between bar elements and beam elements?	[2M]
d)	How many DOFs does a two-nodal, planar truss element have in its local coord system, Indicate with a proper diagram?	inate [2M]
e)	Outline the important properties of CST element.	[2M]
f)	Define isoparametric formulation.	[2M]
g)	When do we consider a problem as steady state heat transfer problem? Giv example.	e an [2M]
h)	Write the governing equation for convection heat transfer.	[2M]
i)	What is the physical significance of mass matrices?	[2M]
j)	What is meant by Eigen Vectors?	[2M]
	PART-B	(50 Marks)
2.a)	Explain the concept of finite element method.	[5M]
b)	Enlist the merits and demerits of finite element method.	[5M]
	OR	
3.	Derive the shape function and stiffness matrix for 1-D 3 nodal quadratic element.	[10M]
4.	Determine Nodal displacements in the truss shown in figure below. E=80GPa. If area = 600 mm ² , length = 500 mm, Bar 2 area = 600 mm ² , length = 600 mm, If area = 600 mm ² , length = 500 mm.	3ar 1 [10M] 3ar 3
	lack	

OR

5. For the beam shown in figure below. Determine displacement and slopes at the nodes, [10M] for each element.

6. For the axi-symmetric elements shown in figure below, determine the element stresses. Let E = 210 GPa, v = 0.25. The coordinates (in millimeters) are shown in the figures, and the nodal displacements for each element are: u1 = 0.05 mm, w1 = 0.03 mm u2 = 0.02 mm, w2 = 0.02 mm u3 = 0.0 mm, w3 = 0.0 mm.

7. For the triangular element shown in figure, obtain the strain-displacement relation [10M] matrix B. The nodal deformations are represented by q.

- 8. Determine the temperature distribution along a circular fin of length 5 cm and radius 1 cm. The fin is attached to boiler whose wall temperature 140° C and the free end is open to the atmosphere. Assume $T\alpha = 40^{\circ}$ C, $h = 10 \text{ W/cm}^2 / {^{\circ}}$ C, $k = 70 \text{ W/cm}^{\circ}$ C.
- 9. Derive the heat conduction matrix for two-dimensional steady state heat transfer [10M] problem.
- 10. Write a detailed note on finite element analysis for 3D stress problems. [10M]
- OR

 11.a) State the properties of Eigen Values and Eigen Vectors.

 b) Explain briefly about mass matrices for elements.

 [5M]
