Code No.: ME603PC

R20

H.T.No.

8 R

(20 Marks)

[2M]

[2M]

[10M]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Supply) - January- 2024 FINITE ELEMENT METHODS (MECH)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

1. a) Explain the relationship between displacement and strain.

3. Find the Deflections in the structure shown below.

b) Define degrees of freedom in FEM.

Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

c)	What is Constant Strain Triangle in structural analysis?	[2M]
d)	Outline the Hermite shape functions of the beam element.	[2M]
e)	With suitable sketch briefly explain axi-symmetric loading.	[2M]
f)	Write a short note on numerical integration.	[2M]
g)	Explain the convection mode of heat transfer.	[2M]
h)	Outline the importance of fin in heat transfer.	[2M]
i)	List the desirable features of FEA packages.	[2M]
j)	What are the advantages of ANSYS commercial software?	[2M]
	PART-B	(50 Marks)
2.a)	Define the role of boundary conditions in Finite Element Analysis.	[7M]
b)	By using Galerkin method, find the approximate solution of $\frac{d^2y}{dx^2} + 500x^2 = 0$ with boundary	ary [3M]
	conditions y (0) = 0; y (1) = 0; with assumed trail function $y = a_1(x-x^4)$.	
	OR	

4. Determine the Displacements for the truss as shown in Fig. Consider E = 70 Gpa, A = 0.1 [10M] m^2

- 5. A concentrated load P = 50 kN is applied at the center of a fixed beam of length 3m, depth 200 mm and width 120 mm. Calculate the deflection at the midpoint. Assume E = 2 x 10⁵ N/mm².
- 6. What is a CST Element? Starting from fundamentals, derive the stiffness matrices of CST [10M] Element.

OR

7. Derive the Stiffness matrix in the case of Axi Symmetric Modeling.

[10M]

8. A metallic fin, with thermal conductivity 70 W/m °K, 1 cm radius and 5 cm long extends from a plane wall whose temperature is 140°C. Determine the temperature distribution along the fin if heat is transferred to ambient air at 20°C with heat transfer coefficient of 5W/m² K. Take two elements along the fin.

OR

- 9. Derive the stiffness matrix for heat flow in a rectangular fin, where k, h and P denotes thermal conductivity, convective heat coefficient and perimeter of fin and A is area of cross section of fin.
- 10. For the stepped bar shown in the figure below, develop the global stiffness and mass [10M] matrices and determine the natural frequencies.

Assume: E = 200 GPa and mass density = 7850 kg/m3, $L_1 = L_2 = 0.3$ m,

 $A_1 = 350 \text{ mm}^2$, $A_2 = 600 \text{ mm}^2$.

Discuss the concept of element mass matrices in dynamic finite element analysis. How
these matrices are derived and incorporated into the overall system matrices? Provide an
example.
