Code No.: CS504PC

R20

H.T.No.

R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

III-B.TECH-I-Semester End Examinations (Regular) - January- 2024 FORMAL LANGUAGES AND AUTOMATA THEORY (Common for CSE, IT, CSC, CSM)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks.

	PART-A	(20 Marks)
1. a) b) c) d) e)	Define the formal definition of Finite Automata. Define Mealy Machine. State pumping lemma for regular expression. List the decision properties of regular languages. For the given grammar {S→AS/a, A→SbA/SS/ba} Construct left most derivation for the string "aabbaaa"	[2M] [2M] [2M] [2M] tree [2M]
f) g) h) i) j)	What is an ambiguity? What is Chomsky Normal Form? List out the Closure properties of CFL. List out the types of TM. Define Undecidability?	[2M] [2M] [2M] [2M]
2.	Define ∈-NFA. Convert the given ∈-NFA to NFA	(50 Marks) [10M]

OR

Define Moore Machine. Construct a moore machine that takes set of all strings over {a, b} [10M] 3. as input and prints"1"as output for every occurance of "a, b" as a substring.

4. State and prove Arden's theorem. Find out the regular expression from the given FA

[10M]

5. Explain the procedure of equivalence between Finite Automata & find out whether the given FA are equivalent or not.

Finite automata 'A

State/Σ	С	d
$\rightarrow Q_{1*}$	Q_1	Q ₂
Q_2	Q ₃	Qı
Q ₃	Q ₂	Q ₃

Finite automata 'B'

State/Σ	С	d
$\rightarrow Q_{4*}$	Q ₄	Q ₅
Q ₅	Q_6	Q ₄
Q ₆	Q ₇	Q ₆
Q ₇	Q ₆	O ₄

 Construct Leftmost Derivation, Rightmost Derivation, Derivation Tree for the following grammar with respect to the string aaabbabbaa.

S > aB | bA

A→aS bAAla

B→ bS | aBB | b

OR

7. Construct CFG from PDA

 $A=(\{q0,q1\},\{a,b\},\{Z0,Z\},\delta,q0,Z0,\emptyset)$

Where δ : $\delta(q0,b,Z0) = (q0,ZZ0)$

$$\delta(q0,b,Z) = (q0,ZZ)$$

$$\delta(q1,b,Z) = (q1,\epsilon)$$

$$\delta(q0, \epsilon, Z0) = (q0, \epsilon)$$

$$\delta(q0,a,Z) = (q0,Z)$$

$$\delta(q1,a, Z0) = (q0, Z0)$$

 Define Griebech Normal Form. Change the following CFG into GNF. S→AA/a, A→SS/b

[10M]

[10M]

OR

9. Design a Turing machine for unary multiplication.

[10M]

10.a) Explain types of Turing machine.

[5M] [5M]

b) What is Post Correspondence Problem? Verify whether the following PCP has a solution or not?A={ba,ab,a,baa,b},B={bab, baa, ba,a,aba}

OR

11.a) Explain about recursively enumerable language.

[5M]

b) Define and explain Decidable and undecidable problem for turing machine.

[5M]
