Code No.: IT602PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Regular) - June- 2024 INTRODUCTION TO MACHINE LEARNING

(TI)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	<u>PART-A</u>	(20 Marks)
1. a)	What do you mean by a well posed learning problem?	[2M]
,	Differentiate between Supervised, Unsupervised and Reinforcement Learning.	[2M]
b)	What is Artificial Neural Network?	[2M]
c)		[2M]
d)	Define sigmoid activation function.	[2M]
e)	What is Maximum likelihood hypothesis?	[2M]
f)	Define Bayesian Belief Network.	[2M]
g)	What is mean by First Order rules?	[2M]
h)	What is temporal difference learning?	[2M]
i)	Define analytical learning.	
j)	Compare analytical and inductive learning.	[2M]
	PART-B	(50 Marks)
2 ~)	How to designing a learning system?	` [5Mj
2.a)	Explain decision tree construction with an example.	[5M]
b)	OR	-
3.	Find Version Space using Candidate Elimination algorithm for the given treexamples in the following table.	raining [10M]

Ex	Sky	Air Temp	Humidity	Wind	Water	Forecast	Enjoy sport
1	sunny	warm	normai	strong	warm	same	yes
2	sunny	warm	high	strong	warm	same	yes_
3	rainy	cold	high	strong	warm	change	no
4	sunny	warm	high	strong	cool	change	yes

4.a) b)	Explain Gradient Decent Training rule. Write the algorithm for Back propagation.	[5M] [5M]
ر (د 5	OR Inspect the mechanism used for neural network representation. State the perceptron rule and delta rule. Analyse the representational power of perceptron.	[5M] [5M]

6.a) b)	Assess the role of maximum likelihood hypotheses for predicting probabilities. Diagnose the functionality of Bayesian belief network.						[5M] [5M]		
υ,	Diagnose are	22.1100.		•	OR				
7.0)	Annly the Ne	ive R	avec class	ifier for any		ices from	m the belov	v dataset.	[5M]
7.a)	Apply the Naive Bayes classifier for any two instances from the below dataset.								• -
		Day	Quilook	Temperature	Humidity	Wind	PlayTervis		
		Dι	Sumy	Hot	High	Weak	No		
		D2	Sunny	Hot	High	Strong	No		
		10,3	Overcast	Hot	High	Weak	Yes		
		D4	Rain	Mild	High	Weak	Yes		
		125	Rain	Cool	Normal	Weak	Yes		
		D6	Rain	Cool	Normal	Strong	No		
		137	Overcast	Cool	Normal	Strong	Yes		
		D8	Sunny	Mild	High	Weak	No		
		Date	Sunny	Cost	Nonnat	Weak Weak	Yes Yes		
		D10	Rain	Mibi	Normal		Yes		
		DH	Sunny	Mild	Normal High	Strong Strong	Yes		
		D(2	Overcast	Mild Hot	Normal	Weak	Yes		
		D14	Overcast Rain	Mild	High	Suong	No		
				1.11.4					
b)	Elucidate the methodology related to case-based reasoning system.						[5M]		
0.4	Discuss abou	it can	atic progr	mmina					[5M]
8.a)									
b)	Explain Q-learning algorithm with an example.						[5M]		
		•	_		OR				
									[10NA]
9.	Illustrate ger	netic a	igorithm '	with an exan	nple.				[10M]
			_						
10	Discuss about explanation-based learning.						[10M]		
10.							[]		
					OR				
	Liano meterritorii	ملييمم	daa is was	d to initializ	e the hype	thesis v	with KRAN	N Algorithm.	[10M]
]],	How prior K	nowie	uge is use	io to minanz	e the hype	ALLICOID V	TILL INDING		[]
				ye ye ye	****	*			