Code No.: MA101BS

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I–B.TECH–I–Semester End Examinations (Supply) -February- 2024 LIN EAR ALGEBRA AND CALCULUS

(Common for all)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)	
1. a) b)	Define rank of a matrix. Show that the vectors $X_1=(1,1,1)$ $X_2=(3,1,2)$ and $X_3=(2,1,4)$ are linearly independent	[2M] nt. [2M]	
c)	Find the sum and product of the Eigen values of $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 3 \\ 3 & 1 & 1 \end{bmatrix}$	[2M]	
d)	Define Rank, Index and signature of Quadratic form.	[2M]	
e)	State Cauchy's root test.	[2M]	
f)	Examine the convergence of the series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} \dots$	[2M]	
9)	Prove that $B(m, n) = B(n, m)$.	[2M]	
h)	State Cauchy's Mean value theorem	[2M]	
i)	Write any two properties of Jacobian	[2M]	
j)	If $f(x, y) = xy + (x-y)$ then find the stationary points.	[2M]	

		PA		(50 Marks)				
			2	3	-1	-1		
2. a	a)	Find the Rank of the matrix by reducing	1	-1	-2	-4	into Normal form	[7M]
			3	1	3	-2		
			6	3	0	-7		

b) State the conditions when the system of non-homogeneous equations AX = B will [3M] have (i) Unique solution (ii) infinite no. of solutions (iii) no solution.

3. Solve the following system of equations using Gauss-Seidel iteration method. [10M] 8x - 3y + 2z = 20,4x + 11y - z = 33,6x + 3y + 12z = 36.

4. Verify Cayley-Hamilton theorem and hence find
$$A^{-1}$$
 and A^{4} for $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ [10M]

Reduce the quadratic form $2x^2 + 2y^2 + 2z^2 - 2xy - 2xz - 2yz$ to canonical form by Orthogonal transformation and hence discuss the nature, rank, index and signature of the quadratic form.

- 6. a) Test whether the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$ is convergent. [5M]
 - b) Apply integral test to test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{\pi}{n}\right)$ [5M]

- Examine for absolute convergence the series. $x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots$ 7. [10M]
- [10M] Verify Rolle's Theorem for the function $f(x) = \log \left[\frac{x^2 + ab}{x(a+b)} \right]$ in [a, b]. 8.

- 9. a) Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. [3M]
 - b) Find the volume of solid generated by the revolution of the area bounded by [7M] $x^2 + y^2 = 2ax \text{ and } z^2 = 2ax$
- 10. a) If x + y + z = u, y + z = uv, z = uvw, then evaluate $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ b) If u = f(y z, z x, x y), then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ [5M]
 - [5M]

Examine for minimum and maximum values of sinx + siny + sin(x+y). [10M]