Code No.: CY701PC/DS701PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

IV-B.TECH-I-Semester End Examinations (Supply) - April- 2024 MACHINE LEARNING

(Common for CSD, CSC)

[Time: 3 Hours]	[Max. Marks: 70]
A.V. and I.	

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

,	carries 10 marks and may 1	iave a, o, c as sub que	stions.		
		PART-	<u>A</u>		(20 Marks)
1. a)	What is well- posed learn	ing problems?			[2M]
b)	Define Decision tree lear	ning.			[2M]
c)				[2M]	
d)					I. [2M]
e)				[2M]	
f)	Define Bayes Theorem.				[2M]
g)	Define Hypothesis space				[2M]
h)	What is Reinforcement le				[2M]
i)	Differentiate the Inductiv				[2M]
j)	What are different ways t	o incorporate prior kn	owledge in	ML algorithms?	[2M]
		D. D. D.			
2	Evalois in detail the India	PART-B			(50 Marks)
2.	Explain in detail the Indu		te Eliminat	ion algorithm.	[10M]
3.	Consider the following se	OR			F4.03.47
	Consider the following se	t of training examples	S		[10M]
a)	What is the entropy of the function classification?	ils collection of train	ing examp	le with respect t	o the target
b)		nim n.C		1.0	
U)	What is the information g			g examples?	
	Instance	Classification	a ₁	a ₂	
	I	+	T	T	
	2	+	T	T	

Instance	Classification	a ₁	a ₂
1	+	T	Т
2	+	T	T
3	-	T	F
4	+	F	F
5	-	F	T
6	-	F	T

4.	Explain the Multi-Layer Perceptron model with a neat diagram.	[10M]
5.a) b)	OR Summarize the derivation of the Back Propagation Algorithm. Explain in detail about the Gradient Descent algorithm.	[5M] [5M]
6.	Explain the concept of EM Algorithm. Discuss what are Gaussian Mixtures. OR	[10M]
7.a) b)	Illustrate the disadvantages of Instance –based methods. Examine the k-nearest neighbor learning algorithm.	[5M] [5M]

8.	Discuss in detail Learning First-order rules.	[10M]
0)	OR	
9.a)	Discuss about Genetic algorithm steps with example.	[5M]
b)	Illustrate the prototypical genetic algorithm.	[5M]
10.	Illustrate about the explanation-based learning algorithm PROLOG-EBG.	[10M]
	OR	
11.	Discuss about Hypothesis Space Search. Demonstrate the Using Prior Knowledge to Initialize the Hypothesis.	[10M]
