Code No.: R22CS58102PC

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-M.TECH-I-Semester End Examinations (Regular) - March- 2024 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

(CSE)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	3 To 1 To 2	
	PART-A	(10 Marks)
1. a)	Represent the proposition "If you have the flee then you miss the final examination"	[1M]
	into symbolic form and also it negation.	[1M]
b) c)	Explain Connectives with suitable example. Define the power set of a set S.	[1M]
d)	Define equivalence relation with example?	[1M] [1M]
e)	Illustrate the properties of algorithms. Give a big-O estimate of the product of the first n odd positive integers.	[1M]
f) g)	State applications of generating functions?	[1M]
h)	What is recurrence relation and give an example?	[1M] [1M]
i)	Define Isomorphism in Graphs with suitable example.	[1M]
j)	Define a tree.	(50 Morks)
2.	a) Express the statement "Everyone has exactly one best friend" as a logical expression involving predicates, quantifiers with a domain consisting of all people and logical connectives.	(50 Marks) al [10M] e,
	and logical connectives. b) Show that R Λ (P VQ) is a valid conclusion from the premises. PVQ, Q \rightarrow R, P \rightarrow M and \neg M	
	OR	740147
3.	inference. i) All men are mortal ii) All kings are men iii) Therefore, all kings are	[10M]
	mortal. b) Give a direct proof of the theorem "If n is an odd integer, then n ² is odd."	
4.		[10M]
	 (ii) A - (B ∪ C) = (A-B) ∩ (A-C). b) Give an example of a function from the set of positive integers to the set of 	
	positive integers that is one-to-one but not onto.	
	OR	[10M]
5.	that R is an Equivalence Relation?	[TOIVI]
	b) Let $A = \{1,2\}$ and $B = \{p,q,r,s\}$ and let R be a relation from A to B defined by $R = \{(1,q),(1,r),(2,p),(2,q),(2,s)\}$ Find the matrix and digraph of R.	

6.	List all the steps used to search for 9 in the sequence 1, 3, 4, 5, 6, 8, 9, and 11 using a) Linear search.	[10M]
	b) Binary search.	
	OR	
7.	a) Outline the usage of strong induction in computational geometry.b) Describe a recursive algorithm for computing the greatest common divisor of two positive integers.	[10M]
8.	a) Discuss the principles of Inclusion – Exclusion & give its applications.b) Define the expected value of a random variable X. What is the expected value of the random variable X that assigns to a roll of two dice the larger number that appears on the two dice?	[10M]
	OR	
9.	a) Find a recurrence relation for the number of steps needed to solve the Tower of Hanoi puzzle.	[10M]
	b) Show how this recurrence relation can be solved using iteration?	
10.	a) Write the rules for constructing Hamiltonian paths and Circuits.b) Write the difference between Hamiltonian graphs and Euler graphs?	[10M]
11.	a) Explain Kruskal's algorithm to find minimal spanning tree of the graph with suitable example?	[10M]
	b) Discuss about the adjacency matrix representation of graphs. Illustrate with an example.	
