Code No.: ME506PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-I-Semester End Examinations (Regular) - January- 2024 OPERATIONS RESEARCH (MECH)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks.

	PART-A	(20 Marks)
1. a)	What are key row and key column in simplex tableau?	[2M]
b)	Discuss the Basic Solution and Unbounded Solution.	[2M]
c)	What is meant by degeneracy in transportation problem?	[2M]
d)	How the assignment problem can be viewed as a linear programming problem?	[2M]
e)	Outline the three assumptions of job sequencing.	[2M]
f)	What are the characteristics of game theory?	[2M]
g)	Define a saddle point in a game.	[2M]
h)	What is inventory management? outline the major decisions concerning inventory.	[2M]
i)	Define the stage and state of a dynamic programming model.	[2M]
j)	What do you understand by a queuing theory?	[2M]
	PART-B	(50 Marks)
2.	Solve the following LPP by using simplex method.	[10M]
	Maximize $Z=5x_1+3x_2$	
	Subjected to	
	$3x_1 + 5x_2 \le 15$	
	$5x_1 + 2x_2 \le 10$	
	and $x_1, x_2 \ge 0$	

OR

- Discuss the various steps involved in a Big-M method to solve the linear [10M] programming problem.
- 4. Solve the following transportation problem by North West corner rule.

[10M]

	F1	F2	F3	Supply
W1	2	7	4	5
W2	3	3	1	8
W3	5	4	7	7
W4	1	6	2	14
Dem and	7	9	18	

OR

5. What is the unbalanced Assignment problem? Explain the detailed procedure to solve [10M] the unbalanced Assignment problem.

6. Consider the following two machines and six jobs flow shop problem. Test for the optimal sequence and estimate the total elapsed time.

[10M]

Job	1	2	3	4	5	6
Machine A	5	10	8	9	6	12
Machine B	7	8	13	7	11	10

OR

7. Discuss in brief, the replacement procedure for the items that deteriorate with time.

[10M]

8. Explain the following.

[10M]

i. Pure strategy.

ii. Saddle Point.

OR

9. Derive EOQ model with uniform demand and its assumptions.

[10M]

10. What are the applications of dynamic programming?

[10M]

OR

11. What is a Waiting line? Discuss some important applications of queuing theory.

[10M]