Code No.: AI601PC

R20 H

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD

UGC AUTONOMOUS III-B.TECH-II-Semester End Examinations (Regular) - June- 2024 PRINCIPLES OF COMPILER DESIGN

(CSM)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A (2	0 Marks)
1. a) b) c)	and all little protot.	[2M] [2M] [2M]
d) e) f)	List the types of LR parser. What are the evaluation orders for syntax directed definitions? Define type expression.	[2M] [2M] [2M]
g) h) i)	Discuss the advantages of stack storage allocation strategy? Define garbage collection. What is common sub expression elimination?	[2M] [2M]
j)	How do you calculate the cost of an instruction?	[2M] [2M]
2.	PART-B Draw the structure of a compiler and describe various phases in the compilation process mention the output of the following statement: id1=id2+id3*50 at each phase. OR	0 Marks) n [10M]
3.a) b)	Define Regular Expression? Explain about the Properties of Regular Expressions. Construct a Finite automata and scanning algorithm for recognizing identifiers numerical constants in 'C' language.	[5M] , [5M]
4.a)	Construct a Predictive parsing table for the Grammar. E->E+T/T T->T*F/F F->(E)/id.	[5M]
b)	What is left recursion? Describe the algorithm used for eliminating left recursion OR	[5M]
5.	Construct CLR parsing table for the following Grammar. S -> L=R S->R L->*R L->id R->L (Write all necessary procedures)	[10M]
6.	Build a syntax directed translation scheme for simple desk calculator. OR	[10M]
7.	What is a three address code? Mention its types. Analyze how would you implement the three address statements? Explain with examples.	[10M]
8.	Explain various storage allocation strategies with its merits and demerits. OR	[10M]
9.	Construct the basic block and compute flow graph for the three address code? Explain with any sample three address code.	[10M]

10. Illustrate the basic notations used in data-flow analysis for optimizations with [10M] examples.

OR

11. a) Explain in brief about different Principal sources of optimization techniques with suitable examples.

b) Discuss how constant propagation can be done using data flow equation.

[5M]