Code No.: R22EC304PC

R22 H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Regular) - February- 2024 SIGNALS AND SYSTEMS

(ECE)

[Time: 3 Hours] [Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	$\underline{\mathbf{PART-A}} \tag{20}$	Marks)
1. a) b) c) d) e) f) g) h) i)	Distinguish between deterministic and random signals. Express one vector in terms of the other vector. Define the transform function. What are the merits of Fourier transform? Define – Impulse Response of a system. What is meant by correlation? State the initial value theorems of Laplace transform. Define ROC of Laplace Transform. Define under sampling. What is auto-correlation?	[1M] [1M] [1M] [1M] [1M] [1M] [1M] [1M]
2.	Explain the classifications of signals with examples. OR A rectangular function f(t) is defined by $f(t) = \begin{cases} 1 & 0 < t < \pi \\ -1\pi < t < 2\pi \end{cases}$ Approximate the	0 Marks) [10M] [10M]
	above function by a wave form $Sin(t)$ over the interval $(0,2\pi)$, such that the mean square error is minimum.	
4.	Find the Fourier transform of (i) e ^{-at} u(t) (ii) te ^{-at} u(t) OR	[5M+5M]
5.	Expand the function $f(t)$ by exponential Fourier series over the interval $(0,1)$. In this interval $f(t)$ is expressed as $f(t) = At$.	[10M]
6. a) b)	Explain the ideal filters characteristics. Explain about distortion less transmission system and derive the expression for the transfer function. OR	[5M] [5M]
7.	For an LTI system described by a differential equation $\frac{d^2}{dt^2}y(t) + 4\frac{d}{dt}y(t) + 3y(t) = \frac{d}{dt}x(t) + 2x(t),$ the input is $x(t) = e^{-t}u(t)$. Determine its transfer function, impulse response and its output $y(t)$.	

Determine the Laplace transform and the associate region of convergence for each of [4M+3M+3M] 8. the following functions:

(i)
$$x(t) = 1$$
; $0 \le t \le 1$

(ii)
$$x(t) = t$$
 for $0 \le t \le 1$ and

(iii)
$$x(t) = 2-t \text{ for } 1 \le t \le 2.$$

OR

Find the Z- transform of the following sequences. Also specify ROC. 9.

$$x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n]$$

State and prove sampling theorem for band limited signals. 10.

[10M]

[10M]

State and prove the Parseval's theorem for energy signal. 11.

[10M]