Code No.: ME505PC

R20 H.T.No.

8 R | | | | |

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-I-Semester End Examinations (Supply) - June- 2024 THERMAL ENGINEERING-II (MECH)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

combustion $C_p=1.147$ kJ/kg K, $\gamma=1.33$.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks.

•	The state of the s	
•	PART-A	(20 Marks)
1. a) b) c) d) e) f) g) h) i)	Define equivalent evaporation. What is the effect of friction on the flow through a steam nozzle? List out the few applications of nozzle. What is the advantage of using multiple stages in a steam turbine design? What is the condition for maximum efficiency in a reaction turbine? How does a condenser in a steam turbine power plant contribute to efficiency? Name two combustion chambers used in gas turbines. List out the various thrust augmentation methods.	[2M] [2M] [2M] [2M] [2M] [2M] [2M] [2M]
2.	<u>PART-B</u> What are the different thermodynamic variables affecting efficiency and output of Rancycle. Explain their influence on Rankine cycle.	(50 Marks) kine [10M]
3.	OR Describe the working principle of a boiler including the function of its key components?	' [10M]
4.	How are nozzles classified based on Mach number of the flow passing through? OR	[10M]
5.	Dry saturated steam at a pressure of 8 bar enters a convergent divergent nozzle and leav at a pressure of 1.5 bar. If the flow is isentropic and the corresponding expansion inde 1.135. Find the ratio of cross-sectional area at exit and throat for maximum discharge.	
6.	A simple impulse turbine has one ring of moving blades running at 150 m/s, absorbed velocity of steam at exit is 85 m/s at an angle 80° with the tangent of wheel, fric coefficient is 0.82, rate of steam flowing 2 Kg/s. Assuming the moving blades to 8 symmetrical, find the i) Blade angles ii) Nozzle angle iii) absolute velocity of steam entrance and iv) power developed.	ction be a
7.	Explain the term "Degree of Reaction" and how the degree of reaction affect performance of the turbine. What is the value of DoR for different turbines?	the [10M]
8.	What is the principle of Ejector condenser and explain the working with line diagram of same.	f the [10M]
9.	OR A gas turbine unit receives air at 2 bar, 300K and compresses it adiabatically to 6.2 bar. compressor efficiency is 88%. The fuel has a heating value of 44186 kJ/kg and fuel-air is 0.017 kg fuel/kg of air. The turbine internal efficiency is 90%. Calculate the work of the compression of the comp	ratio k of

turbine and compressor per kg of air compressed and thermal efficiency. For products of

10. A jet propulsion system has to create a thrust of 100 tons to move the system at a velocity of [10M] 700 km/hr. If the gas flow rate through the system is restricted to a maximum of 30 kg/s. find the exit gas velocity and propulsive efficiency.

OR.

11. Draw the schematic diagram of solid propellant rockets and discuss its working principle. [10M]