Code No.: ME305PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

II-B.TECH-I-Semester End Examinations (Supply) -February- 2024 THERMODYNAMICS (MECH)

[Max. Marks: 70] [Time: 3 Hours]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A (20 M	Marks)
1. a)	Define state.	[2M]
b)	What is heat?	[2M]
c)	Discuss the term control volume.	[2M]
d)	Write the processes in a Carnot cycle.	[2M]
e)	Write in detail about phase transformation.	[2M]
f)	What is meant by work transfer?	[2M]
g)	Define mole fraction.	[2M]
h)	What is wet bulb temperature?	[2M]
i)	Explain Sterling cycle.	[2M]
j)	Draw the p-V and T-s diagram for Otto cycle.	[2M]
		Marks)
2.	Differentiate Macroscopic and Microscopic approaches	[10M]
	OR	5107 5
3.	A fluid at a pressure of 3 bar and with specific volume of $0.18 \text{ m}^3/\text{kg}$ contained in a cylinder behind a piston, expands reversibly to a pressure of 0.6 bar , according to a law, $p = C/v^2$, where C is a constant. Calculate the work done by the fluid on the piston.	[10M]
4.	Derive steady flow energy equation and write assumptions. OR	[10M]
5.	What is perpetual motion machine (PMM1) of first kind and Explain?	[10M]
6.	Steam expands isentropically in a nozzle from 1 MPa, 250°C to 10 kPa. The steam flow rate is 1 kg/s. Find the velocity of steam at the exit from the nozzle, and the exit area of the nozzle. Neglect the velocity of steam at the inlet to the nozzle. OR	[10M]
7.	Derive an expression for work done during Constant temperature process in a closed system.	[10M]
8.	Derive the equation for a perfect gas. OR	[10M]
9.	The atmospheric conditions are 20°C DBT and specific humidity of 0.0095 kg/kg of dry air. Calculate the following i) partial pressure of vapours ii) Relative humidity iii) Dew point temperature.	[10M]
10.	An engine of 250 mm bore and 375 mm stroke works on Otto cycle. The clearance volume is 0.00263 m ³ . The initial pressure and temperature are 1 bar and 50°C. If the maximum pressure is limited to 25 bar, find the following: (i) The air standard efficiency of the cycle. (ii) The mean effective pressure for the cycle. Assume the ideal conditions. OR	[10M]
11.	A Carnot engine working between 400°C and 40°C produces 130 kJ of work. Determine: (i) The engine thermal efficiency. (ii) The heat added. (iii) The entropy changes during heat rejection process.	[10M]