Code No.: R22MA201BS

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

I-B.TECH-II-Semester End Examinations (Supply) - February - 2024 VECTOR CALCULUS AND TRANSFORMS

(Common for all)

[Max. Marks: 60] [Time: 3 Hours]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question

	carries 10 marks and may have a, b, c as sub questions.	.1011
	$\underline{PART-A} \tag{10}$	Marks)
1. a)	Define Laplace Transformation.	[1M]
b)	Define Laplace Transformation of Unit Step function.	[1M]
c)	Find $L^{-1}\left\{\frac{1}{-n+2}\right\}$	[1M]
d)	Define Convolution.	[1M]
e)	Evaluate $\beta(2,2)$.	[1M]
f)	Define the Gamma function and find the value Γ (2).	[1M]
g)	Define the Divergence of a vector.	[1M]
h)	Define the Irrotational vector.	[1M]
i)	State physical Interpretation of Surface integral.	[1M]
j)	State Green's Theorem.	[1M]
7.3		
2. a)	Evaluate L{tsin3tcos2t} PART-B (50 I	Marks) [5M]
b)	Evaluate $L\left\{e^{-4t}\int_0^t \frac{\sin 3t}{t} dt\right\}$	[5M]
3.	OR Find L $\{f(t)\}$ where f(t) is given by f(t)=t; 0 <t<b, 2b="" and="" b<t<2b,="" being="" f(t)="2b-t;" f(t).<="" of="" period="" td="" the=""><td>[10M]</td></t<b,>	[10M]
4. a)	Find the inverse Laplace transform of $\frac{4}{(s+1)(s+2)}$	[5M]
b)	solve the integral equation $y(t) = 1 + \int_0^t y(u) \sin(t - u) du$, Using Laplace	[5M]
	Transform	
5.	OR Solve the differential equation using Laplace transform	[10M]
	$\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 2x = e^{-t}, x(0) = 0, x'(0) = 1.$	
6. a)	Show that $\beta\left(m, \frac{1}{2}\right) = 2^{2m-1} \beta(m, m)$.	[5M]
b)	Evaluate $\int_{a}^{2} (8 - x^3) \frac{\mathbf{t}}{3} dx$ by using $\beta - \Gamma$ function.	[5M]

6. a) Show that
$$\beta(m, \frac{1}{2}) = 2^{2m-1} \beta(m, m)$$
. [5]

b) Evaluate
$$\int_0^2 (8 - x^3) \frac{t}{3} dx$$
 by using $\beta - \Gamma$ function. [5M]

7. a) Evaluate
$$\int_0^5 \int_0^{x^2} x(x^2 + y^2) dx dy$$
. [5M]

b) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$. By changing to polar coordinates.

- 8. a) Find the directional derivate of f = xyz along the direction of the normal to the surface [5M] $x^2z + y^2x + yz^2$ at the point (1,1,1).
 - b) Show that $\frac{\Gamma}{r^3}$ is Solenoidal. [5M]

OF

- 9. If \bar{A} is a constant vector and $\bar{r} = xi + yj + zk$. Prove that [10M] $\nabla \times \left(\frac{\bar{A} \times \bar{r}}{r^n}\right) = \frac{(2-n)\bar{A}}{r^n} + \frac{n(\bar{r}.\bar{A})}{r^{n+2}}$
- 10. Find the work done by $F=(2x-y-z)i+(x+y-z)j+(3x-2y-5z)k \text{ along a curve 'C' in the XY-Plane given by } x^2+y^2=9,Z=0.$
- 11. Verify Green Theorem in the plane for $\oint (x^2 xy^3) dx + (y^2 2xy) dy$, Where C [10M] is Square with vertices (0,0), (2,0), (2,2) &(0,2).