R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) - December- 2024 OPERATING SYSTEMS

(Common to CSE, IT, CSC, CSD, CSM & AI&DS)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)
1. a)	Differentiate between multi programming and multiprocessing.	[2M]
b)	What are the services of an operating system?	[2M]
c)	What is a dispatcher process explain its role?	[2M]
d)	Differences between preemptive and non preemptive scheduling.	[2M]
e)	How can the hold and wait condition be prevented?	[2M]
f)	What are the necessary conditions to occur deadlock?	[2M]
g)	What is internal fragmentation?	[2M]
h)	What do you mean by thrashing?	[2M]
i)	Enumerate different IOCtl System Calls.	[2M]
j)	What delay elements are involved in disk read or write?	[2M]
	PART-B	(50 Marks)
2.a)	Explain about the functions of operating system.	[5M]
b)	What are the different types of system calls?	[5M]
,	OR	
3.	What are different types of operating systems? Explain them in detail.	[10M]
4.	Following is the snapshot of a CPU	[10M]
	Process CPU Burst Arrival Time	

Process	CPU Burst	Arrival Time
P1	75	0
P2	40	10
P3	25	10
P4	20	80
P5	45	85

Draw the Gantt chart and calculate the turnaround time and waiting time of the jobs for FCFS (First Come First Served), SJF (Shortest Job First), SRTF (Shortest Remaining Time First) and RR (Round Robin with time quantum 15) scheduling algorithms.

OR

5.a)	Explain the concept of semaphores. Illustrate with example.	[5M]
b)	Give Peterson solution for critical section problem.	[5M]

· 6.	Consider the following snapshot of a system:					[10M]	
	Processes	Allocation	Max	Available		[]	
		A B CD	A B CD	ABCD			
	P0	0012	0012	2100			
	P1	2000	2750				
	P2	0034	6656				
	P3	2345	4356				
	P4	0 3 3 2	0652				
	Answer the following questions using the banker's algorithm:						
	i) Wha	t is the content of	f the matrix Ne	ed?			
	ii) Is the	e system in a safe	e state? Why?				
				Why or why not?			
				ne deadlocked if this whole request	is		
	granted imme		, or may occom	re deduced if this whole request	15		
	granted minic	diately:	OF				
7 -1	Evaloia dood	look avoidance u				F 6 3 4 7	
7.a)					[5M]		
b)	Write short n	otes on access ma	atrix.			[5M]	
8.	Illustrate the	nage_renlacemen	t algorithms i)	FIFO ii) Ontimal Paga Panlacaman	+	[10M]	
0.	Illustrate the page-replacement algorithms i) FIFO ii) Optimal Page Replacement use the reference string 7, 0,1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2,1, 2, 0, 1, 7, 0,1 for a Memory					[TOIVI]	
	with three fra		, 2, 0, 3, 0, 4, 2	, 3, 0, 3, 2,1, 2, 0, 1, 7, 0,1 for a Me	mory		
	with three ira	mes.					
			OF	•			
9.a)	What is virtua	al memory? Disc	uss the benefits	s of virtual memory technique.		[5M]	
b)	Explain brief	ly about LRU pag	ge replacement	algorithm.		[5M]	
			•				
10.a)	Explain vario	us file access me	thods with suit	able examples?		[5M]	
b)		ystem architectur		r		[5M]	
- /		j stom an omitoetan	OF	2			
11.a)	Explain vario	us file allocation		•		[5M]	
				tom: implementation			
b)	what is direc	tory? Write short		tory implementation.		[5M]	
			*****	****			