Code No.: AI702PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

IV-B.TECH-I-Semester End Examinations (Supply) - April - 2025 DEEP LEARNING (CSM , AI&DS)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)
1. a)	Write about Learning Rate.	[2M]
b)	What are the basic models of network architectures?	[2M]
c)	How to initialize Weights and Biases in Neural Networks?	[2M]
d)	What is the difference between supervised and unsupervised learning networks?	[2M]
e)	What is the problem with sigmoid during backpropagation	[2M]
f)	Write about ReLu activation function	[2M]
g)	Distinguish between parameter typing and parameter sharing.	[2M]
h)	How to implement dropout?	[2M]
i)	What are the challenges in neural network optimization?	[2M]
j)	Write short notes on face recognition application.	[2M]
	PART-B	(50 Marks)
2.	What do you mean by Perceptron? What are the different types of Perceptrons? OR	[10M]
3.	Analyze the working of Adaptive Linear Neuron Learning algorithm.	[10M]
4.a.	What are the applications of adaptive resonance theory? Explain briefly.	[5M]
b.	Explain Advantages of adaptive learning theory.	[5M]
	OR	
5.	Demonstrate training algorithm of Learning vector quantization with an example.	[10M]
6.a.		[5M]
b.	Explain Gradient Based Learning.	[5M]
	OR	
7.a.	Explain Back Propagation Algorithm.	[5M]
b.	How to calculate deltas in Back propagation neural networks.	[5M]
8.a.	What is L2 parameter Regularization and show how the addition of weight decay	[5M]
	modified learning rule.	[5M]
b.	Explain Data set augmentation.	
	OR	
9.	Discuss in detail about each of the following : i. Early stopping ii. Regularization iii. Dropouts	[10M]
	<u> </u>	L