Code No.: R22CS58101PC

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-M.TECH-I-Semester End Examinations (Regular) - March- 2025 ADVANCED DATA STRUCTURE AND ALGORITHMS

(CSE)

[Time: 3 Hours] [Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	$\underline{PART-A} \tag{1}$	0 Marks)
1. a)	What are Leftist trees?	[1M]
b)	What is the role of lazy deletion and cascading cuts in Fibonacci Heaps?	[1M]
c)	What is a hash table?	[1M]
d)	What is the folding method in hashing?	[1M]
e)	What are search structures?	[1M]
f)	What is the time complexity of constructing an OBST?	[1M]
g)	List the advantages and disadvantages of DST?	[1M]
h)	Define Binary Tries.	[1M]
i)	What is Dynamic Programming (DP)?	[1M]
j)	Compare DFS and BFS in terms of time complexity	[1M]
	PART-B (5	0 Marks)
2.	Create a Binomial Heap from the following numbers: [10, 30, 20, 5, 15].	[10M]
	OR	
3.	What are heap structures, and how do they differ from other tree-based dat structures?	a [10M]
4.	Apply the multiplication method (with a constant $A=0.618A=0.618A=0.618$) to hash the keys 25, 38, 72, 91 into a hash table of size 10. Show the computation process. OR	n [10M]
5.	Insert the keys 20, 35, 50, 65, 80 into a hash table of size 11 using quadratic probing Show the final table after all insertions.	. [10M]
6.	Construct an AVL tree by inserting the following keys in order: 30, 20, 40, 10, 25, 35 50. Show all rotations required.	, [10M]
7	OR	
7.	Describe the insertion and deletion operations in a B-Tree with examples.	[10M]
8.	Explain the Brute Force Pattern Matching Algorithm. What is its time complexity? OR	[10M]
9.	Explain the Horspool Algorithm. How does it modify the Boyer-Moore approach?	[10M]
10.	Solve the 0/1 Knapsack Problem using Dynamic Programming for: Weights: [2, 3, 4, 5], Values: [3, 4, 5, 6], Knapsack Capacity: 5	[10M]
	OR	
11.	Explain the Edmonds-Karp Algorithm and how it improves upon Ford-Fulkerson.	[10M]