Code No.: CS403ES

R20

H.T.No.

8 R

[5M]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Supply) -June- 2025 ANALOG & DIGITAL ELECTRONICS

(Common to CSE, CSC)

	(Common to CSE, CSC)		
[Time: 3 Hours] [Max. Marl		ks: 70]	
_	This question paper contains two parts A and B.	_	
Part A is compulsory which carries 20 marks. Answer all questions in Part A.			
Part B consists of 5 Units. Answer any one full question from each unit. Each question			
	carries 10 marks and may have a, b, c as sub questions.		
	$\underline{\mathbf{PART-A}} \tag{20}$	Marks)	
1. a)	What is meant by "Acceptor" and "Donor".	[2M]	
b)	Define Form factor and Peak factor.	[2M]	
c)	What is the need for biasing a transistor	[2M]	
d)	Give the differences in performance of an RC coupled amplifier over single stage amplifier.		
e)	Why a field effect transistor is called so?	[2M]	
f)	Write the features CMOS technology.	[2M]	
g)	What is a Karnaugh map?	[2M]	
h)	List out the differences between DEMUX and MUX	[2M]	
i)	What is a sequential circuit? List the types of sequential circuits.	[2M]	
j)	Define synchronous counter.	[2M]	
2.a)	What is meant by tunneling? From the energy band diagram explain the V-I characteristics of a tunnel diode.	0 Marks) e [5M]	
b)	Discuss the effect of temperature on PN Junction diodes.	[5M]	
	OR		
3.a)	Draw the circuit diagram of an Full wave rectifier and explain its operation.	[5M]	
b)	A full wave rectifier has a load of $3.5 \text{ k}\Omega$. If the diode resistance and secondary coiresistance together have a resistance of 800Ω and the input voltage has a signal voltage of peak value 240 V, Calculate D.C. Power output, A.C. Power Input Efficiency of the Rectifier	l [5M] l	
4.a) b)	Draw a self bias circuit and derive the expression for the stability factor. What is thermal runaway? How can it be avoided? What are three factors contribute to thermal instability	[5M] e [5M]	
	OR		
5.	Derive the equation for the overall voltage gain of a multistage amplifier in terms of the individual voltage gains	f [10M]	
6.	Draw the small signal equivalent circuit of FET amplifier in CS connection and derive the equations for voltage gain ,Input impedance and output Impedance OR	e [10M]	
7.a)	Convert octal number in binary (i)7013 (ii)1234	[5M]	

b) Define logic gate and logic circuit? What are called universal logic gates? Why they

are called so?

What is a multiplexer? Explain the operation of 4 to 1 line multiplexer.	[5M]		
Explain how a digital Demultiplexer cab be realized using logic gates.	[5M]		
OR			
Design a logic circuit with four input variables that will produce a 1 output when any three input variables are 1s. Use K-Map for simplifying the logic expression.	[5M]		
Draw the truth table of full adder circuit and design using NAND gates.	[5M]		
Show how a SR flip-flop can be constructed using NOR Gates? Explain the different states of the SR flip-flop.	[5M]		
What is Race-arround condition? How can you overcome this effect in J-K flip-flop? Explain.	[5M]		
OR			
Explain the operations of S-R Flip-Flop, J-K Flip-Flop with circuit diagrams and excitation tables.	[10M]		

	OR Design a logic circuit with four input variables that will produce a 1 output when any three input variables are 1s. Use K-Map for simplifying the logic expression. Draw the truth table of full adder circuit and design using NAND gates. Show how a SR flip-flop can be constructed using NOR Gates? Explain the different states of the SR flip-flop. What is Race-arround condition? How can you overcome this effect in J-K flip-flop? Explain. OR Explain the operations of S-R Flip-Flop, J-K Flip-Flop with circuit diagrams and excitation tables.		