Code No.: AP202BS

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I–B.TECH–II–Semester End Examinations (Supply) –June - 2025 APPLIED PHYSICS

(Common for CSM, ECE, MECH, AI&DS)

[Time: 3 Hours] [Max. I		rks: 70]
Note: This question paper contains two parts A and B.		
Part A is compulsory which carries 20 marks. Answer all questions in Part A.		
Part B consists of 5 Units. Answer any one full question from each unit. Each question		
carries 10 marks and may have a, b, c as sub questions.		
PART-A (20 Marks)		
	<u>PART-A</u>	(20 Mai Ks)
1. a)	What is de-Broglie Hypothesis?	[2M]
b)	What is band gap range in between valence band and conduction band in case	of [2M]
	insulators?	
c)	What is extrinsic semi conductor?	[2M]
d)	Write any two advantages of LED.	[2M]
e)	What is meant by dielectric polarization?	[2M]
f)	What are the properties of ferro magnetic materials?	[2M]
g)	Write any two applications of LASERS in medical field.	[2M]
h)	What is Numerical aperture?	[2M]
i)	What is Nano technology?	[2M]
j)	What are the applications of SEM?	[2M]
PART-B (50 Marks)		
2.	Derive the energy expression in particles in a potential box and show that energies a	
	quantized.	
2	OR	F1.03.47
3.	Discuss Kronig-Penney model of a crystal in a periodic potential field.	[10M]
4.	Explain Direct and indirect band gap semi conductors.	[10M]
	OR	
5.	Discuss formation of PN junction and also explain I-V characteristics of PN junction	on [10M]
	diode.	
6	Design the expression for internal field soon by an atom in an infinite empty of atom	•a [10 M]
6.	Derive the expression for internal field seen by an atom in an infinite array of atom subjected to an external field.	ns [10M]
	OR	
7.	What is Hysteresis? Explain Hysteresis nature in a ferro magnetic material	[10M]
,.	What is Hysteresis. Explain Hysteresis nature in a ferro magnetic material	
8.	Explain the construction and working of Ruby laser.	[10M]
	OR	
9.	Derive the expression for acceptance angle in an optical fiber.	[10M]
10		[10] (1
10.	Describe the process of synthesis of nano materials using chemical vapour deposition method.	on [10M]
OR		
11.	Explain how X-ray diffraction (XRD) can be used to characterize nano particles.	[10M]
11.	**************************************	[10141]