Code No.: R22AP102BS

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I–B.TECH–I–Semester End Examinations (Supply) – June - 2025 APPLIED PHYSICS

(Common for IT, CSC, CSD, CSM, ECE)

[Time: 3 Hours]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a)	State Heisenberg's uncertainty principle.	[1M]			
b)	What is the significance of the E-K diagram in solids?	[1M]			
c)	What is the Hall effect?	[1M]			
d)	Mention one application of a Zener diode.	[1M]			
e)	What are piezoelectric materials?	[1M]			
f)	Name one material used in rechargeable ion batteries.	[1M]			
g)	What is quantum confinement?	[1M]			
h)	Identify one characterization technique used in nanotechnology and explain its	[1M]			
	purpose.				
i)	What is the principle of total internal reflection?	[1M]			
j)	Name one application of lasers in the medical field.	[1M]			
PART-B (50 Marks)					
2.a)	Explain photoelectric effect and its significance in quantum physics.	[5M]			
b)	Derive the time-independent Schrödinger wave equation for a particle in a one-	[01.1]			
٠,	dimensional potential box.	[5M]			
	OR				
3.a)	Discuss the de Broglie hypothesis and describe the Davisson and Germer experiment	[5M]			
	to validate it.				
b)	Compare the Drude-Lorentz model with the free electron theory in solids.	[5M]			
4.	Explain the working principle and V-I characteristics of P-N junction diode with a	[10M]			
	neat diagram.	[10141]			
	OR				
5.a)	Differentiate between direct and indirect band gap semiconductors with examples.	[5M]			
b)	Analyze the role of Zener diodes in voltage regulation circuits.	[5M]			
,					
6.a)	Describe the different types of polarization in dielectric materials.	[5M]			
b)	Explain the working principle of piezoelectric materials and their applications.	[5M]			
0)	OR	[31,1]			
7.a)	Compare the characteristics of soft and hard magnetic materials.	[5M]			
b)	Explain superionic conductors.	[5M]			
,					
8.a)	Explain the bottom-up and top-down approaches in nanofabrication with examples.	[5M]			
b)	Describe the sol-gel method of nanoparticle synthesis.	[5M]			
,					
OR					
9.a)	Assess the advantages of nanomaterials in electronics and medicine.	[5M]			
b)	Compare the characterization techniques: XRD, SEM, and TEM.	[5M]			

10.a)	Explain the construction and working of a He-Ne laser.	[5M]	
b)	Discuss the three quantum processes involved in lasing action.	[5M]	
OR			
11.a)	Derive the expression for numerical aperture in an optical fiber.	[5M]	
b)	Evaluate the significance of optical fibers in communication systems.	[5M]	

.