Code No.: AP102BS

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I–B.TECH–I–Semester End Examinations (Supply) -June- 2025 APPLIED PHYSICS

(Common for CSE, IT, CSC, CSD)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)		
1. a)	What are the characteristics of matter waves?	[2M]		
b)				
c)	7 7 2			
ď)	· ·			
e)	What are dipole moment and dielectric constant in dielectrics?	[2M] [2M]		
f)	•			
g)				
h)	Draw the structure of an optical fiber.			
i)	What is surface to volume ratio at the nano scale?	[2M]		
j)	Outline the various applications of nanomaterials.	[2M]		
	PART-B	(50 Marks)		
2.	Describe Davisson and Germer's experiment to verify the wave nature of matter. OR	[10M]		
3.	Explain the classification of solids based on band theory.	[10M]		
4.	Derive an expression for the carrier concentration in an n-type extrins semiconductor.	sic [10M]		
5.	OR Explain how a p-n junction diode formed. Draw and explain the energy band diagra	nm [10M]		
	for a p-n junction diode in an unbiased condition.			
6.	Deduce the expression for the Classius-Mossotti equation in the case of so dielectrics.	lid [10M]		
	OR			
7.	Classify magnetic materials into dia, para, and ferro materials based on their magne moment.	tic [10M]		
8.	With a neat diagram, describe the construction and working of the He-Ne laser.	[10M]		
	OR			
9.	Derive an expression for the acceptance angle and numerical aperture of an optic fiber.	cal [10M]		
10.	Describe the fabrication of nanomaterials by the Physical Vapor Deposition (PV mechanism with a neat sketch.	D) [10M]		
	OR			
11.	Explain how X-ray diffraction can be used to characterize nanoparticles.	[10M]		
