Code No.: R22IT601PC

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Regular) - June- 2025 AUTOMATA THEORY AND COMPILER DESIGN

(Common for IT, CSD)

[Time: 3 Hours]	[Max. Marks: 60]
Note: This question paper contains two parts A and B	

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(10 Marks)
1. a)	What is the need of finite automata?	[1M]
b)	Define Deterministic Finite Automata.	[1M]
c)	List the applications of regular expressions.	[1M]
d)	Identify the major elements in Context free grammar.	[1M]
e)	Explain the instantaneous description of a Turing Machine.	[1M]
f)	Interpret key components of push down automata.	[1M]
g)	List the phases of a compiler.	[1M]
h)	If I is the set of items of LR parser, then model the CLOSURE (I).	[1M]]
i)	Tell me about synthesized attributes.	[1M]
j)	Examine the Three address code.	[1M]
	PART-B	(50 Marks)
2.	Construct a NFA to accept strings of a's and b's having substring aba. OR	[10M]
3.	Explain the algebraic laws for regular expression.	[10M]
4.	Label the pumping lemma theorem for the Context free languages. OR	[10M]
5.	What is ambiguous grammar? Show that the grammar $E \rightarrow E + E \mid E*E \mid (E) \mid i$ ambiguous.	d is [10M]
6.	Build a PDA to accept the language L= {WCWR W in $(0+1)^*$ } by empty stack. OR	[10M]
7.	Design a Turing machine that accepts the language of all strings over the alph $\Sigma = \{a,b\}$, whose second letter is b.	abet [10M]
8.	Explain about the classification of Top-Down Parsing with example? OR	[10M]
9.	Simplify a LR(0) items for the grammar $S \rightarrow AB/aaB$, $A \rightarrow a/Aa$, $B \rightarrow b$.	[10M]
10.	Write syntax directed definitions for constructing syntax tree of an expression der from the grammar	ived [10M]
	$E \rightarrow E1+T E1-T T, T \rightarrow (E) id num.$	
OR		
11.	Demonstrate the concept of evaluation order for syntax directed translation. ***********************************	[10M]