Code No.: R22EE104ES

R22 H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-I-Semester End Examinations (Supply) - June - 2025 BASIC ELECTRICAL ENGINEERING (Common for IT, CSD, ECE, CSC, CSM)

[Time: 3 Hours] [Max. Marks: 60]

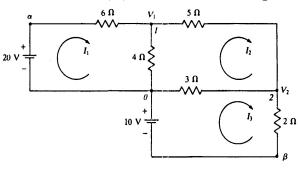
Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A (10 Marks)

1. a)	Draw the V-I characteristic of a practical voltage source.	[1M]
b)	Draw the equivalent circuit of Thevenin's theorem.	[1M]
c)	What is apparent power?	[1M]
d)	What is the line and phase voltage relationship in a 3-phase balanced star connection?	[1M]
e)	What is the efficiency of an ideal transformer?	[1M]
f)	Define the voltage regulation of a transformer.	[1M]
g)	What is the function of a yoke in a d.c generator?	[1M]
h)	Give the back e.m.f equation of a d.c motor.	[1M]
i)	What is the speed of the rotating magnetic field produced in a 3-phase induction	[1M]
	motor?	
j)	Draw the typical torque-slip characteristic of a 3-phase induction motor.	[1M]


PART-B (50 Marks)

2.a) State and explain Norton's theorem.

[5M]

b) Find the value of mesh currents I_1 , I_2 , and I_3 from the circuit given below.

[5M]

OR

3.a) Obtain an expression for transient current flowing through the RL series circuit [5M] excited by D.C source at t= o⁺.

b) State and explain the superposition theorem.

[5M]

4.a) Obtain an expression for the form factor of a sinusoidal quantity. [5M]

b) A series RLC circuit has R=2Ω, L=2H, and C=2μF. Find the resonant frequency, [5M] bandwidth and quality factor at resonance.

OR

5.a) Explain the following: (i) impedance and (ii) admittance of a.c circuits. [4M]

b) A coil having resistance 6Ω and inductive reactance 8Ω are connected in series to a [6M] 200V, 1-phase supply. Calculate the impedance and current.

6.a) b)	Explain the principle of operation of a single-phase transformer. A transformer has 300 primary turns and 75 secondary turns. The primary and secondary resistances are 0.3 Ω and 0.01 Ω respectively and the corresponding leakage reactances are 1.2 Ω and 0.05 Ω respectively. Find the equivalent resistance and reactance referred to the primary winding.	[6M] [4M]		
OR				
7.a)	Explain different 3-phase transformer connections.	[5M]		
b)	Draw the circuit diagram of Autotransformer and explain its operation.	[5M]		
8.a)	Derive an e.m.f equation of a d.c generator.	[6M]		
b)	Draw the circuit diagram of (i) d.c series generator and (ii) d.c shunt generator.	[4M]		
OR				
9.a)	Explain the working principle of a d.c motor.	[6M]		
b)	Explain different characteristics of a d.c shunt motor.	[4M]		
10.	Explain the construction and working principle of a 3-phase Induction motor. OR	[10M]		
11.a)	Give the constructional details of a 3-phase Synchronous generator.	[6M]		
b)	Explain the different losses of a 3-phase Induction motor.	[4M]		
U)	**************************************	[-+141]		