Code No.: MA302BS

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) - June- 2025 COMPUTER ORIENTED STATISTICAL METHODS (CSD)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	<u>PART-A</u>									
1. a)	Define conditional probability?								[2M]	
b)	Define discrete probability function and continuous probability function.								n. [2M]	
c)	Define Uniform distribution.								[2M]	
d)	Define Poisson distribution.								[2M]	
e)			al distril						[2M]	
f)	State Central limit theorem.								[2M]	
g)	Write about one tailed & two tailed tests.								[2M]	
h)	Write about type-I error and type-II error?								[2M]	
i)	Define Markov chain with example.								[2M]	
j)	State n-step transition probabilities.								[2M]	
	PART-B (50 M									
2.	State and prove Baye's theorem.								(50 Marks) [10M]	
	OR									
3.	For the continuous probability function $f(x)=kx^2e^{-x}$ when $x\ge 0$								[10M]	
	find (i) k (ii) mean (iii) variance.									
1	The joint p .d. f. of the random variable (X,Y) is [10]									
4.										
	$f(x, y)=3(x + y) o \le x \le 1, o \le y \le 1, x + y = 1.$ Find Cov (X,Y)									
OR									[10] /[
5.	State Chebyshev 's theorem? Fit a binomial frequency distribution for the								for the [10M]	
	following data									
					Ι_]		
	X	0	1	2	3	4	5			

X	0	1	2	3	4	5
f	2	14	20	34	22	8

6. Define Normal distribution? In a normal distribution exactly 7% of the items are under 35 and 89% are under 63. What are the mean and S.D of the distribution?

OR

7. Two independent samples of 8 & 7 items are given below. Is the difference [10M] between the means of the sample significant? $(t_{tab} = 2.16)$

Sample 1	11	11	13	11	15	9	12	14
Sample 2	9	11	10	13	9	8	10	1

8. Write the procedure for test of hypothesis? A die is tossed 256 times and it [10M] turns up with an even digit 150 times. Is the die biased?

OF

- 9. In two large populations, there are 30% and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations?
- 10. A housewife buys 3 kinds of cereals A, B and C. She never buys the same cereal in successive weeks. If she buys cereals A, the next week she buys B. However, if she buys B or C, the next week she is 3 times as likely to buy A as the other cereal. In the long run, how often does she buy each of the three cereals?

OR

11. Three boys A, B, C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C, but C is just as likely to throw the ball to B as to A .Show that the process is Markovian. Find the transition matrix and classify the states.
