Code No.: R22EC504PC

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-I-Semester End Examinations (Supply) - June- 2025 CONTROL SYSTEMS

(ECE)

[Time: 3 Hours] [Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks.

PART-A (10 Marks)

1. a) The three blocks having transfer functions $G_1(s) = 1/(s+2)$, $G_2(s) = 1/(s+5)$ and $G_3(s) = (s+1)/(s+3)$. These three blocks are connected in cascaded, then derive the equivalent transfer function. [1M]

b) The block diagram of the canonical feedback control system is given in figure, draw its corresponding Signal Flow Graph

 $\begin{bmatrix} 1 \\ R \end{bmatrix}$ $\downarrow B \qquad H$ $\downarrow B \qquad H$

c) A system has a transfer function $\frac{s+2}{s(s^2+7s+12)}$ Determine the poles and zeroes. [1M]

d) The closed loop transfer function of second order system is

$$\frac{C(S)}{R(S)} = \frac{10}{s^2 + 6s + 10}$$
 [1M]

What is the type of damping in the system?

e) Define the significance of PM (Phase Marin) to find the system stability. [1M]

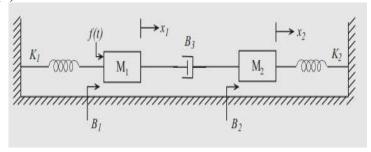
f) The damping ratio and natural frequency of oscillation of a second order system is 0.5 and 8 rad/sec respectively. Calculate the resonant peak. [1M]

g) Why derivative controller is not used in control systems? [1M]

h) Outline the effect of the sampling period on the performance of a digital controller. [1M]

i) Give the condition for a system to be observable. [1M]

j) Give the properties of State Transition Matrix. [1M]


2. Explain the effect of feedback on the overall gain and sensitivity of the system.

[10M]

OR

3. For the mechanical system as shown in the figure, find the transfer function $X_1(S) / F(S)$

[10M]

4. What are the standard test inputs used in the time response analysis and derive the mathematical expressions?

[10M]

- OR
- 5. Construct the Routh array and determine the stability of the system whose characteristic equation is $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$. Comment on the location of the roots of the characteristic equation.
- 6. Draw the Nyquist Plot for the system whose open loop transfer function is

[10M]

$$G(s) = \frac{k}{s(s+2)(s+10)}.$$

Determine the range of 'k' for which the closed-loop system is stable.

OR

7. The open loop T.F of a unity feedback system G(S) is

[10M]

$$\frac{1+4s}{s^2(1+s)(1+2s)}.$$

Determine Gain Margin & Phase Margin.

8. Explain in detail about lag compensation design procedure.

[10M]

- OR
- 9. Compare the applications of proportional, integral and derivative controllers used in control systems.

[10M]

10. Explain in detail about Diagonalization of state matrix with an example.

[10M]

 \mathbf{O}

11. Obtain the state space representation of the following differential equation $\ddot{\mathbf{r}} + 6 \ddot{\mathbf{r}} + 11 \dot{\mathbf{r}} + 2Y = 4U$, where Y is the output and U is the input.

[10M]
