Code No.: DS863PE

R20

H.T.No.

	8	R						
--	---	---	--	--	--	--	--	--

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

IV-B.TECH-II-Semester End Examinations (Advanced Supply) – June - 2025 DEEP LEARNING (CSD)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	<u>PART-A</u>	(20 Marks)						
1. a)	Name any two basic models of ANN.	[2M]						
b)	Explain about supervised learning network.	[2M]						
c)	Define Fixed Weight Competitive Networks.	[2M]						
d)	Distinguish between unsupervised learning networks and supervised learning networks							
e)	Illustrate any two historical trends in Deep Learning.	[2M]						
f)	Demonstrate the key applications of Deep Learning.	[2M]						
g)	Define adversarial training.	[2M]						
h)	What are sparse representations? Explain.	[2M]						
i)	Summarize the role of adaptive learning rates in deep learning.	[2M]						
j)	Analyze how deep learning is used in speech recognition?	[2M]						
	PART-B	(50 Marks)						
2.a)	Demonstrate the architecture of Hopfield network.	[5M]						
b)	Examine different Training Algorithms for pattern association. OR	[5M]						
3.a)	Explain about back propagation for training a network.	[5M]						
b)	Discuss the architecture and working of a Perceptron Network.	[5M]						
4.	Demonstrate the architecture and training of learning vector quantization. OR	[10M]						
5.a)	Analyze how Kohonen self-organizing feature maps work?	[5M]						
b)	Illustrate the Adaptive Resonance Theory Network and its significance.	[5M]						
6.	What is a deep feed-forward network? Explain gradient-based learning in a feed forward network.	vard [10M]						
OR								
7.a)	Outline in detail about hidden units.	[5M]						
b)	Summarize various Differentiation Algorithms used in Deep Learning.	[5M]						
8.	What do you mean by regularization? Explain any two regularization techniques. OR	[10M]						
9.a)	Compare and contrast bagging and other ensemble methods in machine learning.	[5M]						
b)	Explain the concept of tangent distance, tangent prop, and manifold in deep learning.	[5M]						
10.a)	What are the challenges in neural network optimization? Explain.	[5M]						
b)	What are various implementations available for large-scale deep learning?	[5M]						
	OR							
11.a)	Discuss various parameter initialization strategies and their impact on training of models.	deep [5M]						
b)	Outline the key challenges and advancements in applying deep learning to nat	tural [5M]						
	language processing.							
