Code No.: R22EC633OE

R22 H.

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Regular) - June- 2025 DIGITAL IMAGE PROCESSING (CSM)

[Time: 3 Hours] [Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	<u>PART-A</u>	(10 Marks)					
1. a)	Write two properties of the 2D Fourier Transform?	[1M]					
b)	Define spatial resolution.	[1M]					
c)	Name two linear point processing techniques.	[1M]					
d)	Define histogram manipulation.	[1M]					
e)	What is the purpose of low pass filters in enhancement? Explain the term "constrained least squares".	[1M]					
f) g)	What is meant by hit-or-miss transformation?	[1M] [1M]					
h)	List two applications of morphological operations.	[1M] [1M]					
i)	How is fidelity measured in image compression?	[1M]					
j)	Define redundancy in the context of image data.	[1M]					
	PART-B	(50 Marks)					
2.a)	Explain the concept of image quantization.	[6M]					
b)	Compare Walsh and Haar Transforms.	[4M]					
OR							
3.a)	Write about the properties of the Discrete Cosine Transform.	[4M]					
b)	Discuss Hotelling Transform and its use in data reduction.	[6M]					
4.a)	Explain point processing techniques used in image enhancement.	[6M]					
b)	Discuss nonlinear gray level transformations with examples.	[4M]					
OR							
5.a)	Describe the median filter and its application.	[4M]					
b)	Explain how frequency domain filters are used for sharpening.	[6M]					
6.a)	Describe the algebraic approach to restoration.	[4M]					
b)	Explain the working and advantages of interactive restoration.	[6M]					
OR							
7.a)	Discuss least mean square filtering with suitable diagrams.	[4M]					
b)	Explain how constrained least squares can restore degraded images.	[6M]					
8.a)	Explain edge linking and boundary detection techniques.	[4M]					
b)	Discuss region-oriented segmentation.	[6M]					
OR							
9.a)	Define dilation and erosion. Provide examples.	[4M]					
b)	Describe structuring element decomposition and its significance.	[6M]					
10.a)	Explain error-free compression and its methods.	[4M]					
b)	Compare JPEG and JPEG 2000.	[6M]					
OR							
11.a)	Describe lossy predictive coding and transform coding.	[6M]					
b)	Discuss the importance of fidelity criteria in image compression.	[4M]					
