R22EC305ES Code No.: R22EC305ES

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

II-B.TECH-I-Semester End Examinations (Regular) - December- 2024 DIGITAL LOGIC DESIGN

	$(\cancel{p}SD)$		
[Time	e: 3 Hours] (Max. M	Iarks:	60]
Note:	This question paper contains two parts A and B.		
	Part A is compulsory which carries 10 marks. Answer all questions in Part A.		
	Part B consists of 5 Units. Answer any one full question from each unit. Each qu	iestion	
9	carries 10 marks and may have a, b, c as sub questions.		
	PART-A	(10 Ma	rks)
1. a)	Determine (377) ₁₀ in Octal and Hexa-decimal equivalent.	1	[1M]
b)	State the associative property of Boolean algebra.		1M]
c)	Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.	12	[1M]
d)	Derive the sum of minterms for the function $f(a,b,c)=a'b+b'c'$.		1M]
e)	Write a short note on priority encoder.	[1M]
f)	Draw the diagram of 4-Bit Parallel adder.	[[1M]
g)	What is a flip-flop? Write down the characteristic equation of S-R flip flop.	[[1M]
h)	What are shift operations and what are the different types.	[1M]
i)	List the major differences between PLA and PAL.	[[1M]
j)	Implement half adder in VHDL.	[[1M]
	PART-B	(50 Ma	ırks)
2.	Explain about even and odd parity check with an example, what is the drawback. OR		10M]
3.	Implement AND, OR, NOR by using NAND gates only.	[10M]
4.	Obtain the simplified expression in POS of $F(w, x, y, z) = \pi(1,2,4,7,12,14,15)$ us K-maps.	ing [10M]
	OR		
5.	Derive and Implement Exclusive OR function involving three variables using of NAND function.	nly [10M]
6.	Design a combinational circuit with three inputs x,y and z and three outputs A,B a C. When the binary input is 0, 1, 2 or 3 the binary output is one greater than the input. OR		10M]
7.	What are Magnitude comparators? Explain the design of magnitude comparators we the help of a suitable example.	rith [10M]
8.	A sequential circuit with two D flip flops A and B, input X and output Y is specified by by the following next state and output equations A $(t+1)=AX+BX$, B $(t+1)=AX+BX$, B $(t+1)=AX+BX$, Draw the logic diagram and derive state table and state diagram. OR		10M]
9.	Design a MOD 5 Synchronous counter using JK flip flops.	[10M]
10.	A combinational circuit is defined by the functions: $F1 = \sum m$ (3, 5, 7) $F2 = \sum m$ (4,5 Implement the circuit with a PLA having 3 inputs, 3 product terms and two outputs. OR		10M]
11.	Write data flow description of a half adder in VHDL. Draw the truth table and der	ive [10M]

the Boolean expressions, simulate and verify the circuit.