Code No.: R22EC305ES

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) - June- 2025 DIGITAL LOGIC DESIGN (CSD)

[Time: 3 Hours] [Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	carries 10 marks and may have a, b, c as sub questions.	
	PART-A	(10 Marks)
1. a) b) c) d) e) f) g) h) i)	What are the basic properties of Boolean algebra? Convert $(AB)_{16} = ()_2$. State the limitations of Karnaugh map. What are called don't care conditions? Define Encoder. What do you mean by comparator? What are the classifications of sequential circuits? What is race-around condition? What are the types of ROM. What are identifiers?	[1M] [1M] [1M] [1M] [1M] [1M] [1M] [1M]
2.	Perform the subtraction on the given unsigned binary numbers using the 2 complement: (i) 1001-110101 (ii) 101000-10101 OR	(50 Marks) 2's [10M]
3.	State and prove Associate law and Distributive law using logic gate and truth table.	[10M]
4.	Simplify the Boolean function using K-map in products of sums form: $F(w, x,y,z)=\Sigma m(2,3,10,11,12,13,14,15)$.	[10M]
5.	Explain NAND-NOR implementations and design the circuit by Using NAND gat $F = (X+Y). (X'+Y'+Z')$	tes [10M]
6.	Draw the logic diagram of full subtractor and explain its operation. OR	[10M]
7.	Using 8 to 1 multiplexer, realize the Boolean function $T = f(w, x, y, z) = \Sigma m(0,1,2,4,5,7,8,9,12,13)$.	[10M]
8.	Explain the principle of RS Flip-flop with the help of a logic diagram and truth table OR	e. [10M]
9.	Explain the operation of a 4-bit universal shift register with D flip-flops.	[10M]
10.	What is ROM? Explain the different types of ROM's in detail. OR	[10M]
11.	Define HDL and explain various HDL models for combinational circuits. ***********************************	[10M]