6.

R20

H.T.No.

	8	R						
--	---	---	--	--	--	--	--	--

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-I-Semester End Examinations (Supply) - June - 2025 DIGITAL SIGNAL PROCESSING

(ECE)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

transformation. Consider T=0.31416 s

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks.

_								
	<u>PART-A</u>	(20 Marks)						
1. a)	What is the necessary and sufficient condition on the impulse response for stability.	[2M]						
b)	Find the periodicity of the signal $x(n) = \sin(2\pi n / 3) + \cos(\pi n / 2)$.	[2M]						
c)	What are the properties of Twiddle factor.	[2M]						
d)	What are the advantages of FFT algorithm over direct computatio DFT?	of [2M]						
e)	Write the properties of the bilinear transformation.							
f)	What are the limitations of impulse invariant mapping technique?							
g)	What is Gibb's phenomenon?							
h)	Compare Rectangular & Hamming window techniques.							
i)	Differentiate between Round Off and Overflow Noise.							
j)	How to prevent overflow in design of digital filters?	[2M] [2M]						
2.	Determine the Frequency response, Magnitude response and Phase response for the system given by the difference equation. $y(n) = -\frac{1}{2}y(n-1) + x(n) - \frac{1}{2}x(n-1) \text{for } n \ge 0$	(50 Marks) he [10M]						
$ \frac{y(n) - \frac{1}{2}y(n-1) + x(n) - \frac{1}{2}x(n-1)}{OR} $								
3.	Check for following systems is linear, causal, time in variant, stable, static.							
a)	$y(n) = x(n) \cos(x(n)).$	[5M]						
b)	y(n) = x(n) + n x (n+1).	[5M]						
4.	Find the 8 point DFT of the sequence $x(n) = [1,2,3,4,4,3,2,1]$ using radix-2 DIT-FI algorithm.	FT [10M]						
	OR							
5.	Perform linear convolution for the input $x(n) = [2,4,2,5,6,0,3,4,1,2,2,1]$ and Impul response $h(n)=[3,1,2]$, using Overlap add method.	se [10M]						

OR

Convert the analog filter H(s) = 0.5 (s+4) / (s+1)(s+2) using impulse invariant [10M]

7. For the constraints [10M] $0.8 \leq |H(e^{jw})| \leq 1, \ 0 \leq \omega \leq 0.2\pi$ $|H(e^{jw})| \leq 0.2, \ 0.6\pi \leq \omega \leq \pi \text{ with } T=1 \text{ sec }.$

Determine system function H(Z) for a Butterworth filter using Bilinear transformation.

8. Design Low pass filter with frequency response using Hanning window with N=7 [10M] $\begin{array}{ll} H_{d}\left(e^{j\omega}\right) &= 1 & \text{ for } -\frac{\pi}{4} \leq \omega \leq & \frac{\pi}{4} \\ &= 0 & \text{ for } \frac{\pi}{4} \leq |\omega| \leq \pi \end{array}$ OR 9.a) Explain the principle and procedure for designing FIR filter using Hamming window [5M] Compare FIR and IIR Digital Filters. [5M] 10.a) Explain zero input limit cycle oscillation. [5M]b) How can overflow limit cycles be eliminated? [5M]11.a) Write a short note on Dead Band Effects. [5M] b) Explain about Round Off noise in IIR filters. [5M]
