Code No.: R22EC602PC

[Time: 3 Hours]

R22

H.T.No.

8 R

[Max. Marks: 60]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Regular) - June- 2025 DIGITAL SIGNAL PROCESSING

(ECE)

Note:	This question paper contains two parts A and B.	
	Part A is compulsory which carries 10 marks. Answer all questions in Part A.	
	Part B consists of 5 Units. Answer any one full question from each unit. Each que	stion
	carries 10 marks and may have a, b, c as sub questions.	341311
`	curres 10 marks and may have a, o, e as sao questions.	
	<u>PART-A</u> (10 Marks)
1. a)	What are the advantages of DSP?	[1 M]
b)	Check whether the given system $y(n) = T[x(n)] = x(-n)$ is time-invariant or not.	[1M]
c)	What are the differences between DIF and DIT algorithms?	[1M]
d)	Write the formula for IDFT.	[1M]
e)	Discuss Bilinear transformation.	[1M]
f)	Why impulse invariant method is not preferred in the design of IIR filter other than the	
,	low pass filter?	
g)	Give the expression for the frequency response of Hamming window.	[1 M]
h)	Mention the advantages of FIR filter.	[1 M]]
i)	What is interpolation?	[1 M]
j)	Give any two applications of Multi Rate Signal Processing.	[1M]
$\underline{\mathbf{PART-B}} \tag{50 Marks}$		() Marks
2.	Describe the Digital Signal Processing systems.	[10M]
2.	OR	[1011]
3.	Determine and sketch the Magnitude and Phase response of the given system	[10M]
	y(n) = 1/3 [x(n) + x(n-1) + x(n-2)]	[]
	y(u) = 1/0 [1(u) / 11 (u = 1) / 11 (u = 2)]	
4.	Determine IFFT using DIT method for $X(K) = \{2,2,2,2,1,1,1,1\}$.	[10M]
	OR	[101.1]
5.	Compute 8-point DFT of the sequence $x[n] = \{1,1,1,1,1,1,1,1\}$ by using DIF algorithm.	[10M]
٥.	compare o point 211 of the sequence in[ii] (1,1,1,1,1,1,1) of womg 211 augorithms	[101.1]
6.	Design a Butterworth IIR low pass filter with the following specifications:	[10M]
	Pass band ripple $\alpha_p = 1$ dB, stop band attenuation $\alpha_s = 40$ dB, pass band edge frequency	
	2000Hz, stop band edge frequency is 10000Hz and sampling frequency is 25000Hz, using	
	bilinear transformation technique.	· 5
	OR	
7.	Using the Bilinear transform, design a high pass filter monotonic in pass band with cut o	ff [10M]
,,	frequency of 1000Hz and down 10dB at 350Hz. The sampling frequency is 5000Hz.	11 [101.1]
	requestey of 1000112 and do wit 10d2 at 350112. The sampling frequency is 5000112.	
8.	Design a FIR low pass filter of length 11 to approximate the ideal filter with a pass bar	d [10M]
	cut off frequency at 1 KHz. Use Rectangular window.	
	OR	
9.	Compare IIR and FIR filters and discuss the various steps in designing FIR filter.	[10M]
		[]
10.a)	Explain the interpolation process.	[5M]
b)	How do you change the sampling rate by I/D factor?	[5M]
,	OR	. ,
11.a)	Explain the spectrum of Down Sampling.	[5M]
b)	Write the applications of Multi Rate Signal Processing.	[5M]
- /	**************************************	r. 1
