Code No.: DS402PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Supply) -June- 2025 **DISCRETE MATHEMATICS**

(Common to CSC, CSD)

[Time: 3 Hours] [Max. Marks: 70] **Note:** This question paper contains two parts A and B. Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a h c as sub questions

carries 10 marks and may have a, b, c as sub questions.		
	$\underline{PART-A} \tag{20}$	Marks)
1. a) b)	Write a note on Tautology with an example. Write the converse and contrapositive of the statement: "If P is a square, then P is a	[2M] [2M]
	rectangle".	
c)	Give suitable examples for a relation which is not equivalence relation. Consider a relation $P = \{(1, 1), (2, 3)\}$ on $Y = \{1, 2, 3\}$. What are the properties	[2M] [2M]
d)	Consider a relation $R = \{(1, 1), (2, 3)\}$ on $X = \{1, 2, 3\}$. What are the properties satisfied by above relation?	
e)	Define algorithm.	[2M]
f)	What is a well formed Formula? Write an example.	[2M]
g) h)	State Bayes theorem. Solve the recurrence relation U_n - $7U_{n-1}$ =0 if U_0 =2.	[2M] [2M]
i)	Define Bipartite Graph with an example.	[2M]
j)	What is Chromatic Number? Find the Chromatic Number for K ₅ Graph.	[2M]
DADED (50.16.1.)		
2.	PART-B Construct a truth table for each of these compound propositions.	Marks)
۷.	i) p-+-,p	[10M]
	ii) p +-+-,p	
	iii) $pAq-+pVq$	
	iv) $(q-+-,p)+-+(p+-+q)$	
OR		
3.a)	Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.	[5M]
b)	Obtain the PCNF for $(p \lor q) \rightarrow (p \leftrightarrow q)$.	[5M]
4.	Define a bijective function. Explain with reasons whether the following functions are bijective or not. Find also the inverse of each of the functions.	[10M]
	i) $f(x) = 4x+2$, A=set of real numbers.	
	ii) $f(x) = 3 + 1/x$, A=set of non-zero real numbers. iii) $f(x) = (2x+3) \mod 7$, A=N7.	
	OR	
5.	How many relations are there on a set with 'n' elements? If a set A has 'm' elements and a set B has 'n' elements, how many relations are there from A to B?	[10M]

Write about Bubble sort and insertion sort with examples of each.

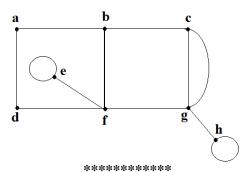
If a set $A = \{1, 2\}$, determine all relations from A to A.

6.

[10M]

Use Mathematical Induction to Show that 1+2+.....n=n(n+1)/2. 7.

[10M]


- 8.a) Find a generating function for the recurrence relation $a_n a_{n-1} + 6a_{n-2} = 0$ For $n \ge 2$. [5M]
 - b) State and explain the properties of the pigeon hole principle. [5M]

OR

- 9. Apply is pigeon hole principle show that of any 14 integer are selected from the set [10M] S={1, 2, 3.......25} there are at least two where sum is 26. Also write a statement that generalizes this result.
- 10.a) Prove that a tree with n vertices has exactly n-1 edges. [5M]
 - b) How many vertices will the following graph contain 16 edges and all vertices of [5M] degree 2.

OR

- 11.a) What are the steps involved in prim's algorithm for finding a minimum spanning tree. [5M]
 - b) Describe the procedure to obtain all possible spanning trees in a given graph. Find the [5M] degree of each region in the following planar graph

