Code No.: R22CS305PC

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) - June- 2025 DISCRETE MATHEMATICS

(Common for CSE, CSM)

	me: 3 Hours]	Tanka, (0)
Note	inis question paper contains two parts A and B	[1arks: 60]
	Part A is compulsory which carries 10 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each que carries 10 marks and may have a, b, c as sub questions.	estion
	PART-A	20 Marks)
1. a) b)	Construct truth table for $(\neg p \lor \neg q)$.	[1M] [1M]
d) e) f) g) h) i)	Write short notes on a partial order relation? When a lattice is said to be bounded? Translate the logical equivalence $(T \wedge T) \vee \neg F \equiv T$ into an identity in Boolean algebra. In how many of the distinct permutations of the letters in MISSISSIPPI. If n is the positive integer, then $2^{3n} - 7n - 1$ is divisible by. How many edges are there in a graph with 10 vertices each of degree six?	[1M] [1M] [1M] [1M] [1M] [1M] [1M]
2.	Obtain the PDNE and PCNE of the C. H. (5)	0 Marks)
	Obtain the PDNF and PCNF of the following formula: $(\neg P \lor \neg Q) \rightarrow (P \leftrightarrow \neg Q)$.	[10M]
3.a) b)	Construct the truth table for the statement formula ($PV \neg Q$). Construct the truth table for (PVQ) $V \neg P$.	[5M] [5M]
4.	Let A be a given finite set and p(A) its power set. Let \subseteq be the inclusion relation on the elements p(A) Construct the Hasse diagrams of (P(A), \subseteq) i) $A = \{a\}$ ii) $A = \{a, b\}$ iii) $A = \{a, b, c\}$ iv) $A = \{a, b, c, d\}$	[10M]
5.	What is a partial order relation? Let $S = \{x, y, z\}$ and consider the power set $P(S)$ with relation R given by set inclusion. Is R a partial order?	[10M]
6.	Show that the set N of natural numbers is a semi group under the operation $x * y = \max \{x, y\}$. Is it a monoid?	[10M]
7.	OR The direct product of any two distributive lattices is a distributive lattice.	[10M]
8.	Determine the number of 5 card combinations out of a deck of 52 cards, if there is exactly one ace in each combination.	[10M]
9.	OR State and prove that the binomial and multinomial theorem.	
		[10M]

10. Apply Kruskal's algorithm to find a minimal spanning tree of the following weighted [10M] graph.

