Code No.: CS305PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) – June - 2025 DISCRETE MATHEMATICS

(Common to CSE, IT & CSM)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	carries to marks and may have a, o, c as sub questions.	
	<u>PART-A</u>	(20 Marks)
1. a)	Prove that $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$ is a tautology.	[2M]
b)		ement. [2M]
,	"I come to class whenever there is going to be a quiz"	
c)	Compute the Symmetric closure of the relation $R=\{(1,1),(1,2),(1,3),(2,3),(3,1)\}$ define a set $S=\{1,2,3\}$.	ed over [2M]
d)	Let $f(x)$: x^2-3x+2 , find $f(x^2)$ and $f(x+3)$.	[2M]
e)	State Mathematical Induction.	[2M]
f)	Write a recursive algorithm for factorial.	[2M]
g)	State principle of inclusion-exclusion.	[2M]
h)	Define probability.	[2M]
i)	Distinguish between Tree and Graph.	[2M]
j)	What do you mean by chromatic number?	[2M]
	DADT D	(50 Maulus)
2.a)	Show that $\sim (p \lor (\sim p \land q))$ and $(\sim p \land \sim q)$ are logically equivalent.	(50 Marks) [5M]
2.a) b)	Show that $\sim (p \land q)$, and $(\sim p \land \sim q)$ are logically equivalent. Show that $\sim (p \land q)$, $(\sim q \lor r)$, $\sim r \Longrightarrow (\sim p)$.	
U)	Show that $\sim (p \land q), (\sim q \lor r), \sim r \longrightarrow (\sim p).$	[5M]
	OR	
3.	Obtain principal disjunctive normal form(PDNF) for the following formula:	[10M]
٥.	i) using truth table	[101,1]
	ii) without using truth table	
	$P \rightarrow [(P \rightarrow Q) \land \sim (\sim Q \lor \sim P)]$	
4.	Let f and g be functions from R to R defined by $f(x)=ax+b$, $g(x)=1-x+x^2$.	[10M]
	If $gof = 9x^2 - 9x + 3$, determine a,b.	
	OR	
5.a)	Define a poset. Give any two partial ordering relations.	[5M]
b)	State and Explain the properties of binary relations.	[5M]
6.a)	Explain in brief the well ordering principle?	[5M]
b)	Write a note on recursive Algorithms.	[5M]
	OR	
7.	Use Mathematical induction to prove that	
a)	$1^2 + 2^2 + 3^2 + \dots + n^2 = (1/6)(n(n+1)(2n+1))$	[5M]
b)	1+2+3++n=n(n+1)/2	[5M]

Explain briefly about Bayes Theorem with an example. [10M] 8.

OR Define and explain a recurrence relation of nth order with an example. 9. [10M]

Define Isomorphism. Prove Isomorphism with example graphs. [10M] 10.

Explain the minimum spanning tree for the following graph using Prims algorithm: 11. [10M]

