Code No.: ME603PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

III-B.TECH-II-Semester End Examinations (Supply) - June- 2025 FINITE ELEMENT METHODS (MECH)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	<u>PART-A</u> (20 Marks)
1. a)	Write the expression for the shape functions of a quadratic element.	[2M]
b)	List out the four advantages of finite element method.	[2M]
c)	A cantilever beam is subjected to a point load at the end along with a uniformly distributed	d load [2M]
	throughout its length. What are its essential and natural boundary conditions?	
d)	Write the transformation matrix of Truss Element.	[2M]
e)	What are the advantages of isoperimetric elements?	[2M]
f)	Represent the degree of freedom for triangular axisymmetric element.	[2M]
g)	State the governing differential equation of a one-dimensional heat transfer case.	[2M]
h)	List out the boundary conditions of 1D heat transfer problem.	[2M]
i)	What are the properties of Eigenvectors?	[2M]
j)	Differentiate Static and Dynamic analysis.	[2M]
	PART-B	(50 Marks)
2.	List and explain the steps involved in Finite Element Analysis. OR	[10M]
3.a)	Explain assembly of stiffness matrix with example.	[5M]
5.a) b)	Derive the stiffness matrix for one dimensional two noded bar element.	[5M]
U)	Derive the stiffness matrix for one difficultional two floded our element.	
4.	For the two-bar truss shown in figure, determine the displacements of node 1 and the str elements $1-3$.	ess in [10M]

N 2 $E = 200\,000\,\text{MPa}$ for both $A = 300 \text{ mm}^2$ members 400 mm OR

- 5. Calculate the maximum deflection and slope by using finite element method for the simply [10M] supported beam of length L, Young's modulus E and the moment of Inertia I, subjected to a point load of P at the centre. Compare the results with theoretical equations
- Briefly explain Constant Strain Triangle with expressions. 6. [10M]
- What is Axi-symmetric analysis and give one example? 7.a[5M] Briefly explain Iso-parametric representation of 4 noded quadrilateral elements. [5M]

8. Consider a pin fin having a diameter of 8 mm and length of 125 mm. At the root, the temperature [10M] is 70°C. The ambient temperature is 25°C and h = 30 W/sq.mK. Take k = 80 W/mK. Assume that the tip of the fin is insulated. Using a two element model, determine the temperature distribution and heat loss in the fin. OR Heat is generated in a large plate ($k = 0.8 \text{ W/m}.^{0}\text{C}$) at the rate of 4000 W/m³. The plate is 25 mm 9. [10M] thick. The outside surfaces of the plate are exposed to ambient air at 30°C with a convective heat transfer coefficient of 20 W/m². ⁰C. Determine the temperature distribution in the wall. 10.a) Differentiate between consistent mass matrix and lumped mass matrix. [5M] Explain Eigen values and Eigen vector. [5M] OR 11. Write a detailed note on finite element analysis for 3D stress problems. [10M]