Code No.: R22CS602PC

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Regular) - June- 2025 MACHINE LEARNING

(Common for CSE, IT, CSC, CSD, CSM)

[Time: 3 Hours] [Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	carries 10 marks and may have a, b, c as sub questions.		
	<u>PART-A</u>	(10 M	arks)
1. a)	Interpret checkers game as well posed learning problem.		[1M]
b)	Given a perceptron with inputs $x1=1$, $x2=0$, weights $w1=0.5$, $w2=-0.4$, and threshold $\theta=0.2$, compute the net input and determine the output (use step activation function).		[1M]
c)	Explain the sigmoid output for net input $= 0$		[1M]
d)	List any two activation functions is commonly used in MLP hidden layers		[1M]
e)	Explain inductive bias in decision trees.		[1M]
f)	For a Gaussian Mixture Model (GMM) with two components:		[1M]
	Component1: w1=0.4, $N(x \mu=0,\sigma=1)=0.6$		
	Component2: w2=0.6, N(x μ =2, σ =1)=0.3		
	What is total probability?		
g)	Differentiate between PCA and LDA		[1M]
h)	First principal component explains 70% variance, second explains 20%. How much is unexplained.		[1M]
i)	Define Q Learning and Q(s,a)=1.0, r=2, γ =0.8, α =0.2, maxQ(s',a')=3. Calculate Upda Q ^{new} (s,a):	te	[1M]
j)	Describe hidden in a Hidden Markov Model.		[1M]
	PART-B	(50 M	Iarks)
2.	Describe in detail the components involved in Designing A Learning System. OR		[10M]
3.	Derive perceptron training rule and design a Perceptron training model to implement OR logic gate with weights w1=1, w2=1 and bias=-0.5.	the	[10M]
4.	Explain the concept of Radial Basis Function (RBF) Networks. How do RBF networks differ from MLPs? Illustrate with the mathematical form of the RBF function. OR	orks	[10M]
5.	Consider a simple MLP with target output as 0.5 and learning rate as 1, calculate output of one forward pass and one backward pass.	the	[10M]

6. Derive the update equations for the means and variances in the EM algorithm for [10M] Gaussian Mixture Model (GMM).

OR

- 7. You are given six two-dimensional data points: (1, 2), (2, 1), (3, 4), (5, 7), (3, 5), and [10M] (4, 5). Suppose you want to cluster these points into two clusters using the K-means algorithm. The initial cluster centers are chosen as C1=(1,2) and C2=(5,7). Perform the following tasks:
 - 1. Assign each data point to the nearest cluster center based on Euclidean distance.
 - 2. Compute the new cluster centers as the mean of the points assigned to each cluster.
 - 3. Reassign the points to the nearest cluster centers using the updated centers.
 - 4. Repeat the above steps until the cluster centers no longer change or after two iterations.
- 8. What is Principal Component Analysis (PCA)? Explain the steps involved in PCA and derive the mathematical formulation for finding principal components using eigen value decomposition.

OR

- 9. Describe Genetic Algorithm and its process of initial population generation, selection using roulette wheel, crossover, mutation, and evaluation of fitness. [10M]
- 10. What are Graphical Models? Differentiate between Directed (Bayesian Networks) and [10M] Undirected (Markov Random Fields) graphical models with examples.

OR

11. What are tracking methods in machine learning and AI? Describe how HMMs or Kalman [10M] Filters are used in tracking dynamic systems. Provide real-world applications.
